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Abstract 

Haptic devices are force-feedback devices that mediate 
communication between the user and the computer. Such 
devices allow users to touch, feel and manipulate three-
dimensional objects in virtual environments and tele-
operated systems. In this paper, one such device is synthe-
sized for the purpose of training medical students and pro-
fessionals, specially those requiring force-feedback from 
the virtual needle inserted into the body. The device is 
designed to deliver high force. Kinematic analysis of a 
suitable mechanism is performed and singularities in its 
workspace were identified to form constraints for an opti-
mization. Performance index based kinematic optimization 
of the mechanism was performed over the whole work-
space. The performance was then checked and limitations 
were analyzed by means of the so called force manipula-
bility ellipsoid. We found that the performance in terms of 
kinematic singularity was greatly improved for the opti-
mized mechanism. 

Keywords: Haptic devices, Kinematic singularity, Force 
manipulability ellipsoid, and Performance measure. 

1      Introduction 

Haptics is the science of touch. It is a recent development 
in Virtual Environments allowing users to touch, feel, and 
manipulate the simulated objects with which they interact. 
Haptic devices can be viewed as having two basic func-
tions: 1) to measure position and their time derivatives 
accurately, 2) to display contact forces to the user at 1kHz 
update rate. In this paper, a haptic device is synthesized for 
virtual epidural injection in which the tip of the needle is 
inserted into the epidural space within the spinal canal 
surrounding the spinal cord. The simple haptic device can 
provide force from an operator to a slave, a slave to an 
operator, or in both directions, so as to give feedback to 
the trainee. 

 

Here we synthesize the mechanical part of the device, 
based on a five-bar planar parallel mechanism. Synthesis 
of such a manipulator is greatly influenced by the fact that 
the relationship between the robot’s actuators and the end-
effector varies with its position and direction. Only after 
minimizing this variation, or in other words maximizing 
the mechanical isotropy, one can choose suitable actuators 
and design a controller. The kinematic equations of me-
chanism describe the relationships between the end-
effector and its actuators. The Jacobian matrix then deter-
mines the required actuator force/torque from a desired 
end-effector force/torque. 

This paper is organized as follows: Section 2 gives se-
lection criterion; Section 3 presents kinematic modeling, 
followed by the workspace analysis in section 4. Section 5 
presents the kinematic optimization. Finally, accuracy 
check and conclusions are provided in sections 6 and 7, 
respectively. 

 

2.    Selection Criterion 

As of our requirement we desired a device which required 
two-dimensional positioning, and is accurate in its working 
workspace, simple, stiffer, and can be easily fabricated. 
The following are some of the points which were consid-
ered before choosing the five-bar parallel architecture 
shown in Figure 1: 
1.  Parallel mechanisms are known to provide high stiff-
ness [1], which is required for our application. 
2. Errors in individual chains of a parallel manipulator do 
not directly sum to yield the overall manipulator position-
ing error [2]. 
      The selected five-bar closed-loop parallel manipulator 
is simple in its structure, has high stiffness compared to its 
serial counterpart, and suffers from fewer singularities in 
its workspace. The device is a grounded planar mechanism 
which reduces its mass, inertia and frictional force, thereby 
increasing the sense of realism to the user. 
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3     Kinematic Modeling 

The planar five-bar five revolute jointed parallel mecha-
nism is shown in Figure 1. It has an end-effector point C 
which is connected to the base by two legs, O1C and O2C. 
In each of the two legs, the revolute joint connected to the 
base is actuated. The mechanism is symmetric about Y-
axis. Such a mechanism can position a point in X-Y plane.  

 
Fig. 1: Kinematic diagram 

Let 1 2 3a , a , a  are physical lengths of the mechanism. 
Then we define normalized lengths as non dimensional 
parameters ir , i=1, 2, 3, i.e, 

1 1 2 2 3 3      r = a / L ,  r = a / L ,  r = a / L  
where,               1 2 3   L =  ( a + a + a ) / 3  

3.1  Inverse Kinematics 

For inverse kinematics, the location of the end-effector, C 
is given and the problem is to find the joint variables nec-
essary to bring the end-effector to the desired location [1]. 
The position vector of the output point C in the reference 
system X-Y is given by 

( )T
p  =   x , y  

          In the reference frame, the position vectors of point 
Bi (i = 1, 2) can be written as 

1 1 1 3 1 1

T     b = ( r cosθ - r  , r sinθ )     

2 1 2 3 1 2

T   +   and    b = ( r cosθ r  ,  r sinθ )  

where, 1θ  and 2θ  are the actuated angles.  
 The inverse kinematic problem can then be solved by 

writing the following constraint equations.  
         2 2 2

1 1 3 1 1 2    +     ( x - r cosθ + r ) ( y - r sinθ ) = r      (1) 

         2 2 2

1 2 3 1 2 2  -   +     ( x - r cosθ r ) ( y - r sinθ ) = r        (2) 
In eqs. (1) and (2), the inputs to reach the position p(x, 

y) is desired based on the position of point C, obtained. 
Four solutions are achieved for the inverse kinematic prob-
lem. 

3.2  Forward Kinematics 

The forward kinematics problem is to obtain the output C 
with respect to a set of given inputs, θ1 and θ2. On solving 
constrained equations (1) and (2) we get  

                                2f y + g y + h = 0                           (3) 
in which, 

2f = 1 + d ,  1 1 3 1 1g = 2 ( d e - d r  cosθ + d r  - r  sinθ )  
2 2 2 2

1 1 3 1 3 1 3 1 2h e  - 2 e ( r  cosθ  - r  ) - 2 r  r  cosθ + r + r - r =  
From eq. (3), two solutions for the forward kinematic 
problem are obtained.  

3.3  Jacobian Matrix 

Let the actuated joint variables be denoted by a vector θ 
and the location of the moving platform be described by a 
vector p. Then the kinematic constraints imposed by the 
limbs can be written in the general form as 

f (p,θ) =0 
i.e., eqs. (1) and (2) 
 Differentiating eqs. (1) and (2) with respect to time, 
we obtain a relationship between the input joint rates and 
the end-effector output velocity as  

                                  p θJ p J θ =                                 (4) 
i.e, 

1 1 1 1

1 2 1 2

3

3

p
 +  

 -  

 x - r cosθ r y - r sinθ
J  

x - r cosθ r y - r sinθ

 
= 
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

and 

1 1

1

2 2

3

3
θ

y cosθ - (x + r ) sinθ 0
J =  r

0 y cosθ + (r  - x) sinθ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 Now, the Jacobian matrix of the five-bar mechanism 
is given by 

                                     -1
θ pJ J  J=                                 (5) 

3.4    Singularity Analysis 

Due to the existence of two Jacobian matrices, the mecha-
nism is said to be at a singular configuration when either 

pJ  or θJ  or both are singular. Singularity leads to an in-
stantaneous change of the mechanisms DoF. [1][3] 

3.4.1  Inverse Kinematic Singularities 

This singularity occurs when the output point reaches its 
limit or its boundary of the workspace. They are given 
below: 
At,  
       1 2 1 3 1 2 1 x = ( r + r ) cosθ - r   and   y = ( r + r ) sinθ    (6) 

    1 2 2 3 1 2 2or, x = ( r + r ) cosθ + r   and   y = ( r + r ) sinθ   (7)      
and 
          1 2 1 3 1 2 1x = ( r - r ) cosθ - r   and   y = ( r - r ) sinθ      (8) 
      

1 2 2 3 1 2 2or, x = ( r - r ) cosθ + r   and   y = ( r - r ) sinθ      (9) 
 There exists some non-zero θ  that results in zero p  
vector. Infinitesimal motion of the end-effector along cer-
tain directions cannot be accomplished. Hence manipulator 
loses one DoF. Under above singularities the links are ei-
ther fully extended or folded. Hence they are also called 

X 
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boundary singularities, which are shown in Fig. 2.  

 
Fig. 2: Boundary singularities 

3.4.2  Direct Kinematic Singularities 
 
A direct kinematic singularity occurs when the determi-
nant of Jp is equal to zero. 
 i.e., Det (Jp) =0.  
The above happens 
1) When,  

1 1 1 2

1 1 3 1 2 3

  

   

              r sinθ  =  r sinθ  

and   r cosθ - r  =  r cosθ +  r

 
 

i.e. when B1 and B2 points coincide.  
This singular configuration is shown Fig. 3(a).  

2) When, 

1 1 2

1 1 2

 

 

x = ( r /2 ) ( cosθ + cosθ )

y = ( r /2 ) ( sinθ + sinθ ) 
 

i.e. when point B1 C B2 lie on a straight line which is 
shown in Fig. 3(b). 

 
               (a)                                            (b) 

Fig. 3: Direct kinematic singularity 

In direct kinematic singularities, there exist some non-
zero p  vectors that result in zero θ  vectors. That is, the 
end-effector can have infinitesimal motion in some direc-
tions while all actuators are completely locked. Hence end-
effector gains one-DOF. 

3.4.3  Conditions for Removing Singularities 

In order to avoid the singularities following conditions are 
obtained. 
a) If  13  r > r  ,  B1  B2 will never coincide. 

b) If  2 1 3r  r  r  > ( + )  

 
Fig. 4: Combined singularity 

B1 C B2 will never lie in a straight line. 
c) If 3 1 2r  < r  r  ( + )  combined singularity is removed when 
O1 B1 C B2 O2 will never lie in a straight line. 
d) If  2 3r r≠  combined singularity is also removed, i.e., 

e) 11 2 3 2 3    < 3,   < 3  r + r + r = 3, and 0 < r 0 < r ,  r < 1.5  
    Rest of the combined singularity conditions are taken 
care with the above mentioned checks. 

4      Workspace Analysis 

Workspace of the planar mechanism, Fig. 1 is defined as 
the space that its end-effector can reach. A dexterous 
workspace is the space within which every point can be 
reached by the end-effector from all possible orientations. 
Boundary singularities describe the boundary of the work-
space beyond which the end-effector cannot reach. Equa-
tions (6-9) are actually annulus regions within which the 
workspace lies. As there exist singular loci inside the theo-
retical workspace the manipulator may pass through them. 
Hence, there is a need to define a measure of proximity to 
those singular loci and then accordingly define dexterous 
workspace. 

4.1 Condition Number: Measure of Singular-
ity Proximity and Accuracy 

The condition number of the Jacobian matrix can be de-
fined as [1]: 

max minC = σ /σ  

where maxσ  , and minσ  are the largest and the smallest 
singular values of the Jacobian matrix, J, respectively. 
These singular values are equal to the square root of the 
maximum and minimum eigenvalues of TJJ  where J is the 
Jacobian matrix. Note that the condition number of a ma-
trix measures the sensitivity of the solution of a system of 
linear equations to errors in data. It gives an indication of 
the accuracy of results from matrix inversion and the linear 
equation solution. Condition number close to one indicates 
a well conditioned matrix. The condition number is inde-
pendent of the scale of a manipulator.  

To check accuracy we confirm end-effector velocity 
vector on a unit circle, 

T 1p p=  
and compare the joint rates as 

T Tq J Jq 1 =  
The above equation represents an ellipse in joint space. 

The eigen vectors of TJJ are orthogonal and the principal 
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axis coincide with them. The lengths of the principal axis 
are equal to the reciprocals of the square roots of the ei-
genvalues of TJJ [4]. Here, the condition number is used 
for two different purposes: first, as a measure of proximity 
to singularity; second, as a measure of kinematic accuracy. 
Using the Inverse kinematics algorithm, position of the 
end-effector is checked for 

1. Solution exists in the joint space or not. 
2. The condition number of the Jacobian matrix.  

Using the following steps: 
a. Workspace under boundary singularity is divided 

in a set of circular arcs. 
b. Each point on a circular arc is checked whether 

solution exists or not in joint space using inverse 
kinematics. 

c. Then at each point condition number of Jacobian 
matrix condition number (K) is checked and ac-
cordingly given a sign as 

• Plus:  if K<5 
• Asterix : if 5<K<10 
• Square: if 10<K<100 
• Diamond: if K>100 

From the workspace shown in Fig. 5, we can suggest a 
region composed of plus sign (with K<5) in which we can 
work accurately and somewhat singularity free. An annu-
lus region between 0.9 and 1.7 (normalized lengths) can be 
our dexterous workspace for generalized link lengths taken 
(which is later optimized) as shown in Fig. 5. 

 
Fig. 5: Plot of Dexterous Workspace 

Because the Jacobian is a function of position, the 
condition number is a local measure and manipulators that 
are designed to be isotropic at individual positions may not 
exhibit similar levels of isotropy throughout their work-
spaces. The condition number only measures the round-
ness of an ellipse but does not measure its size. Both of 
these attributes are, however, important in determining the 
overall consistency of a device’s behavior since shape is a 
relative measurement which represents directional isotropy, 
which is optimized here. 

5    Kinematic Optimization 

We see that the condition number of the Jacobian matrix 

can be successfully used for performance evaluation and 
optimization. From the dexterity plot of the workspace 
with condition number we see that condition number rise 
high (from 5 to 1000) along the boundaries of manipulator, 
and we cannot remove the boundary singularities. So, we 
have to choose performance measure considering the fol-
lowing: 

1. Condition number of the Jacobian matrix should rise 
as smoothly as possible. 

2. Condition number should be low at boundaries. 
3. Workspace should be more keeping the size of de-

vice under certain limit. 
Hence, we choose number of workspace points at 

which condition number is more than 5 as performance 
measure for optimization.  

In this design process, we desire to make the work-
space of a device as large as possible and as far away from 
singularity as possible. We usually select the thickest part 
in the theoretical workspace as a measure of workspace 
area. Workspace is characterized by a circle, which is tan-
gent with the singular loci. Here, the circle is referred to as 
the Maximum Inscribed Circle (MIC), which is defined as 
the circle that is located at the Y axis and is tangent with 
the workspace boundary curves. According to this defini-
tion, the MIC can be described as 

( )22 2

MIC MICx + y - y = r  
Where,    

1 2 1 2
MIC

a +a - a -a
 

2
r = ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

( ) ( )( )2 2
MIC 1 2 1 2 3 y = a +a - a -a /4 - a /2  

Some optimization will be performed later with respect to 
the above MICr values. 

Table 1: Parameter space and optimum 

Parameter Min. 

value 

(c.m.) 

Max. 

value 

(c.m.) 

Resolution 

(c.m.) 

Optimum 

(c.m.) 

a1 9 12 1 10 

a2 11 15 1 15 

a3 3 5 1 3 

Design variables are varied as shown in Table 1 and 
for each architecture, i.e., a combination of a1, a2 and a3 the 
“number of points with condition number greater than 5” 
in the workspace are evaluated. The best configuration is 
the one for which the “the number of points with K>5” 
within the workspace is minimum. The minimum and 
maximum limits of a1, a2 and a3 are based on the size of 
device and other assembling constraints.  
Methodology performed for kinematic optimization is give 
below; 
1. Design variables (a1, a2, a3) are varied as shown in 

Table 1. 
2. Condition number (K) is found over whole workspace 

for all possible configurations. 
3. Figure 6 is plotted for all architectures for a3 v/s 
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“points with K>5”. 
4. From Fig. 6 we select a3=3 due to the minimum of 

“points with K>5”. 
In order to find other two link lengths i.e. a1 and a2 

“Points with K>5” is checked against the workspace 
measure (rMIC) for ranges of a1 and a2 given in Table 1. 

5.1    Results 

Variation of prerformance measure with fixed link length(a3)
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Fig. 6: Variation of performance parameter with base 
length. 

 
Fig. 7: Graph showing Performance parameter variation 
with radius of MIC 

From Fig. 7 we can see that “Points with K>5” are mini-
mum corresponding two architectures, i.e. at 

1 2 39 14 3a = ; a = ; a = ; and 1 2 310 15 3a = ; a = ; a = . 
Since workspace is higher for latter configuration we 
chose it as our final design. 

6    Accuracy 

A force ellipsoid is used for describing the force transmis-
sion characteristics of a manipulator at a given posture. 
Forces in joint space and task space are mapped via Jaco-
bian through the relation. 

                                      TJ fτ =                                  (10) 
Where f is the force vector in task space and τ is the joint 
torque vector. Using Eq. 13, we obtain 

T T T -1f f τ (JJ  τ =  )  
To check the accuracy we confirm the end-effector force 
vector on a unit circle, i.e., 

Tf f 1  ≤  

It is the ellipse defined by 
T T -1τ (JJ  τ 1)  ≤  

Similarly for velocity we have, 
T Tq J Jq 1=  

Above equation represents an ellipse in joint space [5].  
  This ellipse show how efficiently motion/force 
can be applied in each direction [6]. We see the effect of 
variation of condition number on force/torque transforma-
tion between end-effector and joint space in Fig. 9 which 
is explained below 

 
Fig. 8: Force/Torque Transformation 

Fig. 8 shows different sizes and shapes of torque ellipses 
that occur at three different positions of the mechanism 
analyzed. The ellipses at y=3 and y= 18 have different 
shapes, i.e., the condition number at y= 3 are an average of 
1.5 times larger than those at y=18. In other words it has 
over one and a half times the average force capabilities in 
the centre of its workspace than it does at the edges of its 
workspace. 

 
Fig. 9: Graph showing Force/Torque ellipses over the 
workspace for selected configuration. 

Fig. 9 shows the relative sizes of force torque ellipses 
over the workspace for selected configuration, which is 
used to check the performance of the proposed design. Fig. 
10 shows the photograph of a real prototype made. 
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Fig. 10: Prototype of synthesized mechanism 

7  Conclusions 

A two degrees-of-freedom haptic device is synthesized 
using a systematic approach. The device has improved 
performance characteristics which are also analytically 
analyzed. Based on the above synthesis a prototype of the 
device was developed, which functioned appropriately. 
However, further testing is required after interfacing with a 
virtual environment. This will be taken up in future. 
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