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Abstract 
 
A thermodynamically consistent formulation of defor-
mation processes of continua with dislocation motion 
and defect evolution in the material space on meso- and 
micro- level is shown. The balance laws of material 
forces together with the classical balance laws of physi-
cal forces and couples, first and second laws of thermo-
dynamics for physical and material space and general 
constitutive equations are the basis to develop a thermo-
dynamically consistent framework of damage. In this 
case the local balance laws of material forces together 
with the constitutive equations represent evolution laws 
of the material forces. The general form of derived con-
stitutive equation is subsequently simplified through 
additional assumptions which are relevant to validate 
uniaxial extension of Mouse skin performed by others. 
The damage induced stress-softening is characterized by 
Zúñiga-Beatty front factor damage function.  Finally a 
new phenomenological function is proposed for perma-
nent set in isotropic, isothermal hyperelastic material 
like skin tissue. 

 
Keywords: Continuum damage mechanics, Material 
forces, Physical forces, Dissipative processes, Mullins 
Effect and Permanent Set 

1 Introduction 

Skin is the largest single organ of the Mammalians body 
and it comprises of 15-20% of the body weight. The 
roles of the skin are protection, temperature regulation 
and transmission of stimuli. Skin interfaces with the 
environment and plays major role in protecting the body 
against pathogens and control the excessive water loss. 
Skin surgery to treat burn injury, to treat cancerous 
growths are quite common and frequent. In these 
treatment process skin may undergo large deformation 
under repetative loading process. This work is focused 
to study the damage mechanism in the loading cycles 

and its modeling.  
 The skin can be divided in two major layers; the 
outer layer is the epidermis and the lower one is the 
dermis. Dermis is approximately 20 times thicker than 
the epidermis. The layers of the skin are composed of 
gel-like ground substance embaded within collagen fi-
bers, elastin fibers and neuron-fibrils, the TEM image of 
that was taken by C. Storm et. al. [1]. They also experi-
mentally obtained the dynamic shear storage modulus of 
collagen, actin and neurofilaments. It is observed in [1] 
that neurofilaments are less elastic than the collagen 
fibers, however they becomes considerably stiff for lar-
ger deformation. Thus in general the elastic response of 
the skin tissue is primarily governed by the collagen 
fibers which has low extensibility. Skin poses an ori-
ented fibrous structure and we may consider that struc-
ture as an anisotropic structure and this complex struc-
ture allows large elastic deformations.  

 The large deformation in skin induces alterations 
in the complex orientation of the collagen fibers, elastin 
fibers and in the neuron network. These non-affine de-
formation process along with the micro- and meso- level 
changes are responsible for reduced stress-response in 
cyclic loading commonly known as Mullins Effect [2] 
and permanent set on the removal of load. This work 
formulates a thermodynamically consistent deformation 
processes of continua with dislocation motion and defect 
evolution in the material space on meso- and micro- 
level. Finally, the constitutive equation obtained from 
the formulation is matched with the experimental data as 
well as the experimental procedure followed by M. J. 
Muñoz et. al. [3]. It is worth mentioning in this context 
that modeling of softening phenomenon of mouse skin 
tissue is recently studied by A. E. Ehret and M. Itskov 
[4]. In their [4] model anisotropic softening is consid-
ered by means of monitoring the evolution of internal 
variables governing the anisotropic properties of the 
material. In order to model the simple uniaxial extension 
one should have the knowledge of nine material parame-
ters. Sometimes they miss the physical significance to 
study the damage mechanism.  In this work a simple 
thermodynamically consistent damage model of con-
tinua is presented which is in line with the experimental 
procedure of M. J. Muñoz et. al. [3]. In this model the 
assumptions which are made has physical resemblance 
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to the experiment performed by M. J. Muñoz et. al. [3]. 
The present work is based on the generalized theory of 
continuum mechanics involving balance laws of micro-
forces, in addition to the classical laws of mechanics. A 
single scalar variable, referred as damage variable is 
introduced in Section 2. The damage variable represents 
the macro-, meso- and micro level changes in the mate-
rial. In Section 3 we will satisfy the first law of thermo-
dynamics and the dissipation inequality. In the same 
section, we will consider the general form of the consti-
tutive equations which are compatible with the dissipa-
tion inequality. The generalized form of constitutive 
relation presented in Section 3, is the basis to impose 
certain physically justified assumptions. Section 4 im-
poses the assumption of the isothermal deformation 
process which relevant to the experiment performed by 
M. J. Muñoz et. al. [3]. To experimentally distinguish 
the damage from other inelastic effects one chooses the 
quasi-static loading scheme. Thus the assumption of 
quasistatic loading is proposed in Section 4 and a simpli-
fied form of energy potential is achieved. Finally a few 
physically valid assumptions are imposed in the Section 
5 and a new phenomenological model is introduced.  

2  Balance Laws in Physical and 
Material Space  

In this work we apply a Lagrangian formulation of all 
equations, in turn all fields are referenced to the unde-
formed and homogeneous reference configuration. The 
corresponding Eular formulation can be obtained easily 
by suitable transformation of all quantities to actual con-
figuration (See Stumpf and Hoppe [5]). We will first 
distinguish the kinematical variables in the physical 
space and the same in the material space.  
 Let, us consider a deformable body B consist-
ing a set of particle pk i.e. B= { pk }.The motion of B is 
given by a smooth vector function ( , t)= χx X  where X 
and x denote the reference and current co-ordinate re-
spectively. Thus one-one mapping of the continuous 
medium can be represented in terms of the displacement 
vector ( , t)u X  as  

( , t) ( , t)= χ = +x X X u X .   (1) 

The deformation gradient F is defined as ∂
=
∂

xF
X

and 

the motion (1) is also assumed to be invertible and, con-
sequently, the inverse function 1−F exists. Hence J ≡ 
det(F) is assumed positive. Unlike [3] in this work we 
introduce a certain variable, which represent underlying 
physical mechanisms like microstructure changes in a 
material during the deformation process. It proves effec-
tive to use a scalar variable ( ,  ) tα α= X referred to as 
damage variable in addition to the gross motion of the 
body defined by ( , t)= χx X . By choosing damage vari-
able as a scalar function, helps one to satisfy the objec-
tivity requirement (Truesdell and Noll [6]) for the con-
stitutive equations. 
 We will now take a close look on the microforces 

incorporating the additional softening parameters. Let us 
assume that the forces accompanying changes of the 
softening variables α  are represented by a (vector) mi-
cro stress  ( , )tXπ , which characterizes forces, transmit-
ted across internal surfaces. A scalar microforce takes 
care the internal forces distributed over the volume of 
the material and represented as ( , )tξ X . Finally the ex-
ternal scalar microforce  ( , )tβ X , which may takes care 
the possible inertia microforce. These three terms ,ξπ   
and β  vanishes, as there is no change in the damage 
variables. So, the damage variable may takes care the 
damage in the skin tissue and by this variable we may 
describe all the deformation induced changes in the skin 
tissues. Next we employ the classical balance laws at 
any part of the body B such that P∈  B with an element 
volume dv and element area da  at P∂ . However, one 
can obtain the balance laws of micro-forces along with 
the classical physical forces by employing the principle 
of virtual power (See Germain [7].). The principle of 
virtual power asserts that at any part of the body B  such 
that P∈  B, the virtual power expended on  P by materi-
als or bodies exterior to P  (i.e. external power) be equal 
to the virtual power expanded within P (i.e. internal 
power). The virtual power balance yields the following 
relations: 

0

0

Div  (physical force balance)
 (physical traction condition)

Div  (micro-force balance)
.  (micro-traction condition).e

ρ

ξ β ρ α

+

=
− +

=

T b v
t Tn

n

=

π =

π

     (2) 

where ( , )t=b b X  is the body force per unit volume in 
the reference configuration, T denotes the first Piola-
Kirchhoff stress tensor, n denotes the out ward unit 
normal vector to the P∂  of  P, v  denotes the material 
velocity and e denotes the surface external microforce 
of damage. 
 We will discard the acceleration v  in the physical 
space and the rate of change of  .α  Incorporating only 
the rate effect and form relation (2) one obtains 

( . . )

( . ) ( . ( . ) ) .
P

P P

dv

dv da

ξα α

βα α
∂

∇ + + ∇ =

+ + +

∫

∫ ∫

T v

b v Tn v n

π

π
 (3) 

The relation (3) essentially represents the weak form of 
the microforce balance in any part of the body P∂  of  
P . The expression on the left hand side of relation (3) 
represents the stress power density and represented as 

. . . . ,σ ξα α ξα α= ∇ + + ∇ ≡ + + ∇T v T Fπ π      (4) 
where ∇ =v F . The relation (4) depict that if there is no 
change in the damage variable the stress power density 
identically satisfy the classical relation . .σ = T F  Note 
that the physical force balance equation (2) obtained 
through the principle of virtual power can be obtained 
by the classical force balance. Subsequently, the mo-
ment balance condition asserts .T T=TF FT  
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3  Dissipation Inequality and Consti-
tutive Relation 

A reliable formulation of the constitutive relation of 
deformable bodies undergoing damage requires a  ther-
modynamic theory for deformation which will account 
the micro and macro change as well as heat flux in the 
material space. Any constitutive relation has to satisfy 
the first and second law of thermodynamics. To validate 
any constitutive relation one has to satisfy the dissipa-
tion inequality. We start the section from the first law of 
thermodynamics, which gives the energy balance in 
thermo-mechanical domain and requires the global bal-
ance laws of physical forces, couples and material forces. 
Taking into account the balance of energy in physical 
and material space as (See Germain [7]) 

( ) ( . )

( . ( . ) ) . ,
P P

P P P

d dv dv
dt

da rdv da

ε κ βα

α
∂ ∂

+ = +

+ + + −

∫ ∫

∫ ∫ ∫

b v

Tn v n q nπ
     (5) 

where ( , )tε X  denotes the internal energy, ( , )tκ X  the 
kinetic energy, ( . )r X t  the heat source and ( , )X tq  the 
heat flux vector. 
 The second law of thermodynamics express the 
principle of entropy growth and its general form is  

 ( ). 0,
P P P P

d rd dv dv dv da
dt

η
θ θ∂

≡ − + ≥∫ ∫ ∫ ∫
q n       (6) 

where ( , )d tX  is the energy dissipation per reference 
volume, ( , )tη X  the specific entropy and ( , ) 0tθ >X  the 
absolute temperature. 
 The localised balance of the local equation in mate-
rial frame which takes care of the change in skin tissue 
or network alternation thus given below 

Div ,rε σ= + − q   (7) 
where σ  denotes the stress power density. The second-
law of thermodynamics for the local energy balance 
leads to 

Div( ) 0.rd η
θ θ

= − + ≥
q   (8) 

With the use of local energy balance equation in (7) and 
definition of free energy ( , )tψ X   

,ψ ε θη≡ −    (9) 
the term " Div "r − q  may be eliminated from (8) to give 
the local dissipation inequality in the form 

. 0.qd σ ηθ θ ψ
θ

≡ − − ∇ − ≥  (10) 

The inequality (10) represents the second law of ther-
modynamics under the assumption that the balance laws 
of physical and material forces holds. The constitutive 
equation in (10) is the most general one and it is valid 
for any physical system undergoing damage. However, 
the objectivity and the polyconvexity are not checked so 
far. We have introduced the damage variable as a scalar 
function in section 2 and it readily complies the objec-
tivity requirement. The polyconvexity of strain energy 
will be complied later in section 5.  In order to study 

existing experimental results done by Muñoz et. al. [3], 
we will correlate the experimental procedure with the 
general constitutive relation (10) to look for further sim-
plification.  

4. Additional Assumptions relevant to 
the Experiment performed by Muñoz 
et. al. [3]   

In the experiment conducted by Muñoz et. al. [3], they 
anesthetized (n=6) mice by sodium pentobarbital and in 
the process the body temperature may reduce to 25° C 
from the normal temperature of 30-32° C.  In the dissec-
tion process enough precaution was taken to prevent the 
dehydration of the skin samples. During test ultrasonic 
dehumidifier was used also and a constant temperature 
of 25° C was maintained. Thus we lose no generality by 
assuming the deformation process as isothermal one. 
Even if one consider the rate of loading, which was very 
small (15 mm/min) the loading rate does not change the 
absolute temperature of the material. The assumption of 
isothermal process reduces the expression (10) in the 
following way 

d σ ψ= −    (11) 
where σ  represent the stress power density given in 
relation (4). The above relation can be recast in a con-
venient way as 

. . 0d α ξα ψ≡ + ∇ + − ≥T F π      (12) 
which forms a basis for the subsequent development of a 
constitutive theory. 
 It follows from the dissipation inequality relation 
that the constitutive equation consist of four dynamical 
variables namely , ,ψ T π  and ξ . The constitutive equa-
tion for these variables are the variable of F  and α  
along with their special and time derivatives of any or-
der. We assume that we will deal with the kind of mate-
rial where the four dynamic variables  , ,ψ T π  and ξ   
are defined as follows 

( , , , , , ),
( , , , , , ),
( , , , , , ),
( , , , , , ).

ψ ψ α α α α
α α α α
α α α α

ξ ξ α α α α

= ∇ ∇
= ∇ ∇
= ∇ ∇
= ∇ ∇

F F
T T F F

F F
F F

π π
     (13) 

Introducing (13) into the second law of thermodynamics 
(12) leads to the thermodyna-mically admissible form of 
constitutive equation, where the free energy has to sat-
isfy the following restriction 

0, 0, 0F α αψ ψ ψ∇∂ = ∂ = ∂ =  (14) 
which means that the free energy may be of the form 

( , , ).ψ ψ α α= ∇F   (15) 
To simplify the notation scheme, we collect the physical 
and material kinematical variables and their rates in the 
ordered sets  

{ , , },
{ , , }.

α α
α α

= ∇
= ∇

e F
e F

   (16) 

With (13) and from the reduced form of free energy in 
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(15) the dissipation inequality reduced to 
( ( , ) ( )). ( ( , )

( )). ( ( , ) ( )) 0

d

α α

ψ

ψ α ξ ψ α∇

= − ∂ +

−∂ ∇ + − ∂ ≥
FT e e e F π e e

e e e e
 (17) 

A close look on the inequality described in (17) depicts 
the result that the physical stresses consist of two parts, a 
non-dissipative part, which can be derived from a free 
energy potential function, ψ  and a dissipative part. The 
material response can be rewritten in the following way 
with indicated subscripts `s' for the dissipative part as 

( ) ( , )
( ) ( , )
( ) ( , )

S

S

S

α

α

ψ
ψ

ξ ψ ξ
∇

= ∂ +
= ∂ +
= ∂ +

FT e T e e
e e e
e e e

π π   (18) 

where the response function with subscripts `s' has to 
satisfy the dissipation inequality 

( , ). ( , ). ( , ) 0.S s sd α ξ α= + ∇ + ≥T e e F e e e eπ    (19) 
In (19) the first term denotes the dissipation due to vis-
cous effects on the macrolevel, the second is for the dis-
sipation due to the dislocation in the material space, fi-
nally the third term is for the local driving force on the 
net work defects. 
The material response defined in (19) can be rewritten in 
set form as  

( ) ( , )sψ∂ +eχ e χ e e=   (20) 
where the set of dissipative driving forces 

( , ) ( ( , ), ( , ), ( , ))s s S s sξ= =χ χ e e T e e e e e eπ  (21) 
recast the dissipation inequality defined in (19) as 

( , ). 0.sd = χ e e e ≥   (22) 
The relation (22) describes the rate of entropy growth 
and for such a case if it is integrable, then there exist a 
scalar valued function  ( , )ϕ ϕ= e e   such that 

( , ) ( ( , )).d ϕ= ∂ee e e e e   (23) 
where ( , )ϕ e e is a dissipative pseudo potential, which 
enables dissipative driving stresses (21 ) by one func-
tional 

( , ) ( , ).s ϕ= ∂eχ e e e e   (24) 
Introducing (24) into (20) leads to thermodynamically 
consistent constitutive equations 

( ) ( , ).ψ ϕ∂ + ∂e eχ e e e=   (25) 
The governing equations determining the dissipative 
deformation process are obtained by introducing the 
constitutive equation (25) into the physical force balance 
(2)1 and micro-force balance (2)3 by neglecting the ac-
cleration terms, yields the set of equations 

 
Div( ( ) ( , )) ,
Div( ( ) ( , ))

( ( ) ( , )) .
α

α

ψ ϕ
ψ ϕ

ψ ϕ β
∇ ∇

+

∂ +
− ∂ + + =

F Fe e e b 0
e e e

e e e 0
α

α

∂ + ∂ =

∂
∂

  (26) 

The kinematical variables along with their rates defined 
in (16) are now to be satisfied by objectivity require-
ments. The softening variable ( , )tα X  is a scalar func-
tion and satisfies the same. However, the case is not so 
for F  and F . Thus, we have to replace them by their 
objective counter parts, which can be obtained by pull-
back to the undeformed and homogeneous reference 
configuration (See Stumpf and Hoppe [8].). Depending 

upon the choice of damage variable the α∇  and α∇  
may satisfy the objectivity requirements. But if it does 
not satisfy the same, then one employs the same tech-
nique as discussed earlier. An example of the same is 
discussed in Section 7. 
We have as many equations (26)1 and (26)2 as we have 
independent unknown fields, { },αF  and since the set of 
equations is complete, we are able to determine the un-
known fields supplemented by corresponding boundary 
and initial conditions. In our consideration so far we 
have assumed that the free energy ( )ψ ψ= e  and 

( , )ϕ ϕ= e e  are differentiable function. However, they 
can be sub-differentiable function too. 
 Muñoz et. al. [3] performed the uniaxial exten-
sion of Mouse skin specimens under displacement con-
trol way. They performed monotonic loading of the 
specimens at a displacement rate of 15 mm/min.   For 
the gauge length of 25 mm the strain rate reduces to 0.6 
/min or 0.01/s. The rate of displacement or the strain rate 
was small in the experiment. In the experiment major 
emphasis was given to study the damage and inelastic 
aspects. In this context we may neglect the rate of load-
ing effect and assume that the loading was quasi-static 
for the further development of our theoretical model.  In 
this way one avoids the viscous effect along with the 
other rate dependent effects. The viscous effects on the 
macro level and physical rate contribution on meso and 
micro level is neglected through quasistatic loading as-
sumption. Thus for quasi-sataic loading we may set  

0, 0α= =F   and  0α∇ =  . Thus the set of equation in 
(26)1 and (26)2, following the quasi-static loading as-
sumptions reduces to  

Div( ( )) ,
Div( ( )) ( ) .α α

ψ
ψ ψ β∇

+
∂ − ∂ + =

F e b 0
e e 0

∂ =
 (27) 

Through this assumption the dissipation inequality de-
fined in (19) is satisfied identically to zero. Still there 
could be other kind of dissipation in the process of load-
ing. To propose a simple form of constitutive relation 
we assume that the contributions of dissipative compo-
nents are negligibly small. So, the stress response de-
fined in (18) can be deduced for the physical co-ordinate 
in terms of first Piola-Kirchoff stress as 

( , , ).ψ α α= ∂ ∇FT F   (28) 
The constitutive equations will have to be reduced fur-
ther to comply with the principle of material frame-
indifference. Such a reduction of constitutive equations 
is standard and it is not our concern here. 
 The uniaxial tensile test of the skin specimens may 
be represented by the deformation mapping as i i ix Xλ= , 
where ix  are the current coordinates, iX  are the refer-
ence coordinates and iλ  are the stretches. Employing 
the incompressibility constrain the deformation gradient 
reduces to  

1/ 2

1/ 2

0 0
0 0
0 0

λ
λ

λ

−

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

F ,  (29) 

where λ  is the principal stretch in the direction of load-
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ing. It appears that the uniaxial extension is a homoge-
neous deformation and we obtain 0α∇ = . In view of 
this, the relations (28) and (26)2 reduces to  

( , ),
( , ) 0.α

ψ α
ψ α
= ∂

∂ =
FT F
F

   (30) 

From (29) we conclude that the general form of strain 
energy density function W  of a damaged material un-
dergoing isothermal, quasi-static and homogeneous de-
formation may be represented as  

( , ).W W α= F     (31) 
In this case the softening variable α  is a single scalar 
variable. However, one may induce more such scalar 
variable identifying each of them as separate entity in 
order to understand the different inelastic aspects in the 
physical space. In this case we choose 1α  and 2α  as the 
two different damage variables and following the same 
procedure as discussed in Section 2 and from relation 
(30) we may arrive to  

1 2

1 2

1 2 1 2

( , , ),

( , , ) ( , , ) 0.

W W

W Wα α

α α

α α α α

=

∂ = ∂ =

F

F F
 (32) 

 So far we have modeled the damage mechanism of  
mouse skin for simple uniaxial extension and introduced 
two damage parameters in order to study two different 
inelastic aspects of the experiment performed by Muñoz 
et. al. [3]. Next we will validate our damage model de-
veloped in (32) with the experimental data.     

5  Validation with the experimental 
data 

In the cyclic loading process the skin tissue showed the 
stress-softening effect with residual strain, i.e., perma-
nent set. These two effects are commonly observed in 
rubberlike materials (See Mulins [2], Zúñiga-Beatty [9]). 
Rubberlike materials exhibiting stress-softening phe-
nomenon show the selective memory property of keep-
ing the maximum previous ever deformation in its strain 
history. For any deformation beyond the maximum pre-
vious ever deformation, the material updates the current 
one. The fact is observed in the uniaxial experimental 
data for different maximum previous deformation and 
the stress-softened material responses are distinctly dif-
ferent for different degrees of maximum previous ever 
deformation (See Zúñiga - Beatty [9].). The phenome-
nology of ideal stress-softened material postulates that 
the stress-response at the maximum previous ever de-
formation is identical as that of virgin material. In the 
experimental results obtained by Muñoz et. al. [3] show 
the similar results as that of rubberlike materials (See 
Figure 3 (a) and (b) of Muñoz et. al. [3]).  
 It is well established that stretch procedures a quasi 
irreversible rearrangement of the network comprising 
collagen, elastin and neuron due to localized nonaffine 
deformation resulting from short chains reaching the 
limit of their extensibility. This nonaffine deformation 
produces a displacement of the network junctions from 
their initial state, in turn produces some form of rear-

rangements. The constitutive model developed in (32) 
may be remodeled further to validate the experimental 
data obtained in [3].  
 Recently the author with M. F. Beatty and R. Bhat-
tacharyya [10] developed a constitutive theory for a gen-
eral class of incompressible, isotropic stress-softening, 
limited elastic rubberlike materials. The developed 
model used Zúñiga-Beatty [9] font factor damage func-
tion to study small superimposed oscillation about finite 
static stretch of rubberlike elastomers and  aortic tissue 
strips. It is found that Zúñiga-Beatty [9] font factor dam-
age function shows good agreement to predict the fre-
quency of aortic tissue strip collected from thoracic re-
gion. In this damage formulation we set the damage pa-
rameter 1α  as the Zúñiga-Beatty [9] font factor to model 
the stress-softening behavior. It is worth mentioning that 
the Zúñiga-Beatty [9] font factor is an isotropic damage 
function and we have discarded 1α∇  for homogeneous 
deformation, which essentially means that 1α  is an iso-
tropic function also for simple uniaxial extension. The 
first damage variable in (32) may be written as  

1
1 1( ; ) ,b S sF s S eα − −= ≡   (33) 

where 1b  is the softening parameter and from (29) we 

obtain 4 22 /s λ λ= +  as the current strain intensity 
(See [10 -11] for details.). The corresponding function 
of selective memory is obtained through the maximum 
previous strain intensity defined by 

0
max ( ),

t
S s

τ
τ

≤ ≤
=     (34) 

where the material is subjected to a deformation history 
up to the current time t , and τ  denotes a running time 
variable (See Zúñiga-Beatty [9] for details. ). 
 The skin samples collected from the abdominal re-
gion along the longitudinal length was of 25 mm in 
length, average of 5 mm in width and average of 0.58 
mm in thickness for male specimens and 0.41 for female 
specimens. The length scale is five times higher than the 
width scale and the thickness scale is at least 1/43 times 
the length scale. We assume that the anisotropic model 
of the skin tissue will have low to moderate contribution 
in uniaxial extension. To model the parent material we 
choose Gent[12] type isotropic limited elastic material 
model defined in accordance to relation (32) as     

1

( ,1,1) ( ,1,1)

3
( 3) log 1 ,

2 3m
m

W W W

IG I
I

= =

⎛ ⎞−
= − − −⎜ ⎟−⎝ ⎠

F B
    (35) 

where T=B FF  is left Cauchy-Green deformation tensor 
and G is the rigidity modulus at the ground state. The 
first invariant of B is denoted by 1I  and mI is the limit-
ing value of 1I  at the limiting deformation. The shear 
response functions are obtained for limited elastic Gent 
[12] type material as  

1
1 1

1
2

1 3 /
2 0,

1 /

2 0.

m

m

IW G
I I I
W
I

β

β−

⎛ ⎞−∂
= = >⎜ ⎟∂ −⎝ ⎠

∂
= =

∂

  (36) 

The constitutive curve for simple uniaxail deformation 
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of parent Gent [12] type material will be monotonically 
increasing and for 

1
1lim

mI I
β

→
= +∞  and  1lim

mI
Gβ

→∞
= . The 

functional form of energy defined in (35) satisfies the 
material frame indifference or objectivity requirement 
and from condition (36) the energy form satisfies the 
polyconvexity requirement as well.  
 Muñoz et. al. [3] experimentally observed that the 
residual strain, i.e., the permanent set in uniaxial defor-
mation had a good correlation with the maximum strain 
previously obtained which is denoted by S in (34). Phe-
nomenological model of second damage variable is de-
fined as  

/ 1
2 2 ( ; ) 1.s SF s S eα −= = ≤      (37) 

From the expression of two damage variables defined in 
(34) and (37) we define the engineering stress response 
of damage skin in simple uniaxial extension with the 
help of relation (32) and (36) as (See [10] for detail 
derivations.) 

1
1

22
1

31
1( ) (1 ) ,

1

m
s

b S sm S
s

m

I
I

G e b e
I
I

σ λ
λ

−− −

⎛ ⎞−⎜ ⎟⎛ ⎞⎜ ⎟= − − −⎜ ⎟
⎜ ⎟⎝ ⎠−⎜ ⎟
⎝ ⎠

  (38) 

where 2b  is a nondimensional material constant associ-
ated with residual strain. The stress response for mono-
tonic loading may be obtained by setting current strain 
intensity as maximum previous strain intensity, i.e., 
s S=  in (38) as   

2
1

1 3 / 1( ).
1 /

m
v

m

I
G

I I
σ λ

λ
⎛ ⎞−

= −⎜ ⎟−⎝ ⎠
  (39) 

  
Fig. 1: Comparison of the theoretical monotonic loading 
(from relation (38)) and cyclic loading (from relation 
(39)) curves with the Muñoz et. al. [3] uniaxial extension 
data of 18 months old male mouse skin .  

 

For the constitutive model of damaged skin tissue, the 
uniaxial engineering stress-stretch data for 18 months 
old male mouse the monotonic loading is first fitted to 
the equation (39) to obtain the shear modulus 

0.942G = MPa and to obtain limiting extensibility con-
stant 3.206mI =  (i.e., limiting stretch 1.284mλ = ). These 
values were then used in equation (39) to obtain by a 

best fit from the cyclic loading data the values 
1 22.487, 1.694b b= =  of nondimensional material pa-

rameters. The results for the model in (38) and (39) are 
mapped as solid line in Fig. (1). These curves are close 
to the data in both monotonic loading and cyclic loading. 
The damaged paths are deviating slightly in lower stretch 
but still quite close to the model developed in (39). The 
experimental data points are shown by small unfilled 
circles are taken from the fitted data plot of  Muñoz et. al. 
[3] in strain controlled manner.  

6  Conclusions 

A generalized approach considering the physical and 
material coordinate and the corresponding micro-forces 
along with the physical forces are presented in order to 
formulate the damage from the simple theory of contin-
uum damage mechanics. The constitutive model defined 
in (38) is chosen as simplest form. However, they can be 
in fractional derivative or may induce other complex 
form. The assumption of quasi-static loading enables 
one to distinguish the damage from other inelastic ef-
fects such as viscoelastic effects, Payne effects. Finally 
the proposed softening model defines a pretty simple 
functional form and the correspondingly the micro-
forces are taken care through the physical coordinates by 
phenomenological postulations. Although the proposed 
softening function is based on the assumption of iso-
tropic damage, one may obtain the corresponding anisot-
ropic model satisfying the thermo-mechanical con-
straints discussed in this paper. 
 The success of our simple damaged material model 
(38) in characterizing the Mullins effect and residual 
strain is evident in two respects. First of all it may pro-
duce simple closed form analytical solution for the ap-
plication problems both in Boundary value problems and 
in dynamical problems. Secondly, comparison of our 
phenomenological model with the experimental data 
requires determination of only four material constants: 
the shear modulus G , the limiting first invariant, i.e. 

m
m 1I I

λ λ=
= for Gent [12] type material model and the 

two nondimensional material constants 1b  and 2b .  In 
contrast, fiber directed anisotropic damage model re-
cently developed by Ehret-Itskov [4] that compare fa-
vorably with the experimental data do so by fitting a 
great many parameters like nine that lack, in most cases, 
of any physical interpretation at all, and which also de-
mand considerable computation. 
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