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Abstract 
 

 In a variety of moving machineries ranging from 
tiny micro-motors to giant turbo aircraft, rotors are 
principal elements. Early investigators had noticed the 
effects of imbalance and increasing speeds on the 
vibrations as the rotors operated near resonance. In 
modern rotors, it is not unusual to consider speeds in 
excess of 30,000 rpm as typical since faster machines 
improve power-to-weight ratios. For better design and 
operational safety it is important to correctly understand 
the dynamics of the rotors. In many instances, the rotors 
are asymmetric and exhibit complex kinetics. Some 
simplification occurs when the systems are orthotropic, 
but they may display a number of interesting peculiarities 
including parametric oscillations, half-critical resonance 
due to gravity in horizontal rotors, etc.  In the present 
research, the authors consider an overhanging high inertia 
horizontal rotor on a flexible isotropic shaft with 
asymmetric end bearings providing distinctly different 
elastic and damping characteristics in two fixed reference 
directions. The analysis includes the effects of rotatory 
inertia, gyroscopic couple, coriolis force and internal and 
external damping giving rise to a set of differential 
equations with variable coefficients where ranges of 
unstable operations have been noted. Digital simulation of 
the mathematical model, apart from exhibiting ½ critical 
resonance, documents irregular dynamic response of the 
system at certain speed and parameter combinations – the 
motion evolving very differently under slight changes in 
initial conditions.  
 
Keywords: Asymmetric Rotor Bearing Systems; 
Instability; Gyroscopic Couple; Rotatory Inertia; Coriolis 
Force; Supercritical response. 
 
 

Introduction: 
 
 Rotors are vital elements of a large number of 
moving machineries. Examples are varied and include 
machine tools, industrial turbo-machinery, aircraft gas 
turbine engines, tiny micro motors and many more. 
Vibrations caused by mass imbalance usually create much 
problems in rotating machinery. Imbalance occurs if the 
mass centre of the rotor does not coincide with its axis of 
rotation. Even though higher speeds induce greater 
centrifugal imbalance forces the current trend of higher 
power density invariably prefers higher operational speeds 
in rotating machinery. For example, speeds as high as 
30,000 rpm are typical in current high-speed machining 
applications. 

 Early investigators noticed the occurrence of 
excessive vibrations of rotors when the speed of rotation 
came close to the natural frequency. This had been termed 
as the “critical speed”. Jeffcott(1) in 1919 considered the 
lateral vibrations of a flexible shaft in the vicinity of 
critical speeds. In his analytical model, which consisted of 
a single disk assumed as a point mass, the moment of 
inertia was absent. Despite its simplicity, analysis of this 
model explained many phenomena observable in rotors. 
Researchers like De Laval and Föppl showed that 
operation beyond the critical speed is a possibility where a 
significant reduction of vibrations can be expected. 
Several studies of Jeffcott rotors have been reported by 
Karpenko et al(2) and Pavlovskaia et al(3). Chattoraj, 
Sengupta and Majumder(4) considered a two dimensional 
isotropic and flexible horizontal rotor where the coriolis 
force and gravity action were considered : here the special 
interest was concentrated on the irregular dynamic 
response at the supercritical state. 
 Despite greatest care, rotors cannot be fully 
balanced dynamically and at high speeds, operative 
centrifugal actions tend to intensify vibrations. With 
nonlinear flexible systems sub-harmonic vibrations may 
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occur at periods that are integer multiples of the 
fundamental(19). 
 An accurate prediction of the dynamic 
characteristics is vital to the designer of rotating 
machinery. Most rotors are axisymmetric and their 
analysis is somewhat simpler. Some rotors, however, do 
not possess this symmetry with the result that much 
complication is introduced in their analysis. Further, rotors 
formed with flexible shafts with large disks, set up 
gyroscopic and rotatory inertia couples that introduce new 
and complex dynamics.  
 Dimentberg(5) in his well known work on 
Flexural Vibrations of rotating shafts  covered various 
aspects of rotor dynamics  ranging from simple central 
disk rotors to complex  ones on flexible bearings. Critical 
speeds of continuous shaft-disk systems have been studied 
by Eshleman and Eubanks(7). They included the effects of 
transverse shear, rotatory inertia and gyroscopic moments. 
Finite element methods were used to determine critical 
speeds of straight circular rotors by Nelson et. al(8, 9) and 
Rouch and Rao(10) . Gmur and Rodrigues(11) studied the 
dynamics of  tapered circular rotors. The effect of shear 
deflection and rotary inertia on the critical speeds of the 
rotor was taken into account by Grybos Gliwice(6), which 
are of interest especially when a critical speed of higher 
order is concerned and the ratio of slenderness of a rotor is 
small. 

Ozguven and Ozkan(12) presented the combined 
effects of shear deformation and internal damping to 
analyse the natural whirl speeds and unbalance response of 
rotor-bearing systems. 

 
Information about the stability of vibratory 

motions becomes essential for ensuring better designs of 
rotor-bearing systems and operational safety. The effects 
of bearing and shaft asymmetries on the stability of the 
rotor has been reported by Ganesan(13). Gunter Jr. and 
Trumpler(14) evaluated the stability of the single disk rotor 
with internal friction on damped, anisotropic supports. 
Wettergren and Olsson(15) considered a horizontal rotor 
with a flexible shaft supported in flexible bearings and 
found that major instabilities appear near the imbalance 
resonance and remarked that the resonances due to gravity 
near one half of the major critical could be reduced with 
enhanced material damping. Hull(16) experimentally 
scrutinized the whirling of a rotor in anisotropic bearings 
and also studied the backward whirling process 
theoretically. Smith(17), while studying the motion of an 
asymmetric rotor in flexible anisotropic bearings, found 
that the motion was marked by unstable ranges bounded 
by critical speeds with instabilities at speeds lower than 
the principal critical. Chattoraj, Sengupta and 
Majumder(18)  also investigated the dynamics of a vertical 
Jeffcott rotor with a very flexible shaft whose compliance 
far exceeded that of the support bearings. Their analysis 
discussed the fascinating evolution of vibratory motion in 

a two dimensional model as the rotor passed from the 
subcritical to supercritical status. 

 
Much attention is given by investigators to 

vibration of rotors as this impedes the normal service or 
even directly endangers the safety of the system by 
gradually promoting fatigue failure. The elastic vibration 
characteristics of rotatory systems have been reported by 
Panovko(19) and Biezeno and Grammel(20) – the latter work 
being regarded as classic. Chong-Won-Lee(21) discussed 
the analytical aspects of rotor dynamics ranging from  
simple Jeffcott rotor to multi-degree-of-freedom systems.  

 
In the earlier cited communications, the present 

authors(4,18) had reported a chaos like intriguing evolution 
of dynamics of  flexible rotors in the neighbourhood of 
instability. Flexible rotors have lower static rigidity but 
may be an important choice from the stand point of weight 
reduction: what is most vital is to explore the condition of 
smooth running of such rotors at the operating point. The 
intent of the present investigation into flexible rotors is to 
scrutinize the effects of coriolis force, gyroscopic couple 
and rotatory inertia on the system dynamics.  

 
Nomenclature: 
 
C  : Damping coefficient (translational) (N.s/m) 

0C  : Damping coefficient (rotational) (N.m-s/rad) 
Cx, Cy : Damping coefficients at the end bearing along  
                 x-axis and y- axis (N.s/m) 
d : Diameter of the shaft (m) 
d1 : Diameter of the disk (m)  
Fx, Fy : Restoring force components along x , y –axes    

(N)             
Fxr, Fyr : Restoring force components along xr , yr axes 

(N) 
g : Gravitational acceleration (m/s2) 
K  : Lateral bending stiffness of the shaft at disk  
                 location (N/m) 

0K  : Rotational bending stiffness of the shaft at disk  
                 location (Rad/N-m) 
Kx, Ky : End bearing stiffness along x , y- axes (N/m)            
L : Span of the horizontal cantilever shaft (m)  
m : Equivalent mass of the rotor system (kg) 
p : Natural frequency in bending (rad/s) 
rc, rk : Bearing property ratio (damping, stiffness) 
x, y : Non-rotating frame of reference (m) 
xr, yr : Rotating frame of reference (m) 

yx,  : Velocity components along x- and y- axes  
                 directions respectively (m/s) 

rr yx ,  : Velocity components along xr- and yr- axes  
                 directions respectively (m/s) 
ε : Eccentricity of disk mass centre (m). 
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θ          : Angular displacement at any instant of time ‘t’
    (rad) 
δ  : Static deflection (m)  = mg/K.= g/p2 

p
ωγ =    : Frequency ratio 

ν  : Natural frequency in wobbling (rad/s)  

0,, ζζζ m  : Damping ratios 

kc µµ ,  : Asymmetry at bearing (damping, stiffness) 
τ   : Acceleration time (s). 

θω =  : Angular velocity at any instant of time ‘t’ (rad/s) 

crω  : Critical speed (rad/s) 
 
 
Equations of Motion: 
 
The mathematical model is shown in fig.1. 

 
Fig.1: The Cantilever Rotor Model 

      

 
Fig.2: Fixed and Rotating    Co-

ordinate system 
          

 
Fig.3(a, b): Snap-shot of Slope-Deflection Pattern 

 
Fig.1 proposes the model which shows a flexible 

shaft rigidly supported on a bearing at one end while its 
other end, carrying a thin disk, is also resting against a 
bearing mounted flexibly. One may note that in such an 
arrangement, the rotating shaft provides damping and 
elastic restoring forces rotating with the shaft, while the 
flexible bearing at the disk end provides stationary elastic 
and damping forces. One purpose of providing a flexible 
support at the disk end is to act as an arrestor during 
resonant/unstable conditions: more importantly, the other 
purpose is to produce a model where the elastic and 
damping parameters are time variant.  The fixed and the 
rotating coordinate systems (the reference frames) are 
shown in fig.2 while fig.3 (a, b) pictures the slope- 
deflection patterns of the elastic shaft at the disk end in the 
rotating xr-z and yr-z planes.  
 

The co-ordinates of ‘G’ (the centre of mass of the 
disk) are expressible both in terms of the fixed and the 
rotating co-ordinate systems of fig.2. The following two 
transformation equations relate these two co-ordinate 
systems: 
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The rotating shaft-disk system shows both lateral (xr, yr) 
and rotational ),( yrxr ψψ  deflections in the xr – z and yr – 
z planes respectively, as in fig.3 (a, b). 
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Fig.4: Forces and Moments on the Rotor System 

 
We start with a balanced rotor with high 

flexibility. Modern precision rotors may be balanced to 
within 1 micron (eccentricity) and for a flexible horizontal 
rotor, the static deflection will be many times higher than 
this figure to justify this assumption. Also, a forward 
synchronous whirl is assumed.    Figure 4 shows the 
various forces and moments acting in the xr – z and yr – z 
planes. The forces are identifiable as: inertia, Coriolis, 
centrifugal, spring, damper and gravity forces. The 
moments are arising from: inertia, gyroscopic, spring and 
damper actions. For large slope angles xrψ and yrψ , the 
gyroscopic moment terms shall be replaced by 

)2sin5.0sin2(2
xrxrJ ψψω − and 

)2sin5.0sin2(2
yryrJ ψψω − in the xr – z and yr – z 

planes respectively. 
The critical speed of a lumped mass cantilever shaft 
considering forward precession (gyroscopic effect)(19), is 
given by : 
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where 
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This speed is higher than the critical speed (i.e, natural 
frequency p) of the static cantilever. 
  
Applying d’ Alembert’s principle and referring to fig.4, 
the equations of motion  for the system (small slopes) can 
be written as follows in the rotating reference frame:  
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where: [ ]T

yrxrrr yxq ψψ= , is the generalized 
coordinates vector of the rotor.  
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f = f(t) 

[ ]Tmamamm θθθθ cos.sin.cos.sin. 11 −−−−=
, is an external forcing function vector including gravity, 
where tωθ =  for uniform whirl. 

θ2cos11 nm KKK += , θ2sin12 nKK = , 

θ2cos11 nm CCC += , θ2sin12 nCC = , 

( )yxm KKK +=
2
1

, ( )yxn KKK −=
2
1

, 

( )yxm CCC +=
2
1

, ( )yxn CCC −=
2
1

and 21,aa are 

coefficients  such that :  force × .a1  =   moment equivalent 
of force ( producing slope) and  moment ×  a2  =  force 
equivalent of moment (producing deflection). 
 
 
The above equation can be expanded to the following form 
after some mathematics: 
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( )[ ] −−++ rcmmr yppy θµζζ 2cos12  
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We define the state variables : 

yryrxrxrryrrxr yvxv ψψ =Ω=Ω== ,,, . 
Now, equations (5) to (8) can be conveniently written as 8 
first order differential equations, compressed into the 
following matrix form : 
 

uHsFs }{}]{[}{ +=  ……………………… (9) 
 
Where, 
 { } [ ]Tsssssssss 87654321=  

[ ]T
yryrxrxrryrrxr yvxv ψψ ΩΩ=  

[F] = [αij] 8x8 ,  and u = g. 
 
 
 
 
Elements αij of the 8 ×  8 coefficient matrix are embedded 
in equations (5) to (8). 
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These first order differential equations, though unwieldy 
otherwise, can be numerically handled by Runge-Kutta 
algorithms.  
 
Numerical Example and Digital 
Simulation: 
 
 To obtain the responses of the rotor system, the 
following representative data are chosen: 
  
Diameter of the Disk, d1   : 200 mm 
Equivalent mass of the Shaft-Disk system, me  

: 0.488 kg. 
Mass of the Disk, m  : 0.445 kg. 

Diameter of Shaft (Steel) ,d  : φ 8 mm. 
Length of Shaft (Steel), L   : 300 mm.             
Lateral Bending Stiffness of Shaft, K   

: 4468N/m 
Rotational Stiffness of Shaft (wobble),K0  

: 134Nm/rad 
M.I of Disk (diametral), J  : 2.78x10-4 kgm2 
Natural Frequency (bending), p : 95.69 rad/s 
Natural Frequency (wobble), q : 694.22 rad/s 
Horizontal Stiffness of Bearing, Kx : 4468N/m 
Horizontal stiffness of Bearing, Ky : rk.Kx  

  
 
Fig.5 shows the configuration of the cantilever 

rotor system. 

 

Fig.5: The Proposed Cantilever Rotor System 
 

Results and Discussions: 
Non-dimensional deflection = 

δ
rx ,  Frequency ratio = 

p
ωγ = . 

 
 
 
 
 
 

       
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig.6: Stability Chart for a Rotor with 
Asymmetric end bearing and gyro effect. 

 
Fig.7: Stability Chart for a Rotor with 
symmetric end bearing and gyro effect. 
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Fig.9: Stability Chart for a Rotor with 
symmetric end bearing and gyro effect. 

 
 
Fig. 6 to fig.9 represent the stability charts plotted 

for two separate disk sizes and µ values. 
  
The stability boundaries for two sets of ζ values 

are shown in fig.6:  the case of ζ  =  ζ m =  ζ0 = 0.01 is 
shown in solid lines where µ c = µk  = 2/3(≈ 0.67) and        
r =100 mm. The corresponding boundaries for ζ  =  ζ m 
=  ζ0 =0.2 are given in dotted lines. In fig.6 the apparently 
unstable region spanning over 0.52 < γ < 0.63 is a large 
amplitude region that matches the ½ critical resonance of 
horizontal rotors. The large amplitudes observed at 
ζ values of 0.01 can be drastically reduced to about 13 
(non-dimensional) with a ζ value of 0.2. The transient 
response becomes unstable at γ  > 2.5 (shown shaded) 
where damping gives little benefit. 

 In fig.7, a similarity with fig.6 is observable 
where  µ c = µk  = 0 (isotropic end bearings). Note that the 
½ critical resonance amplitude, at around γ = 0.55, is 
reduced to about 25. For a second order system with ζ 
value of 0.01, this resonance (non-dimensional) amplitude 
would be close to 50. The effect of symmetry in reducing 

amplitude is thus clear.   For a disk  radius of r = 100 mm,   
the gyro  effect  enhances  the  critical speed by 3 % over 
the static value, but the shift of the ½  critical point is seen 
to be about 10 % . 

 
Fig.8 has features similar to fig.6. In this case, 

only the disk radius is changed to r = 300 mm. Though the 
gyro effect enhances the critical speed by 28 %, no 
significant change in the shape of the stability boundaries 
is observable except that the ½ critical resonance point is 
shifted by about 20 %. Similarly, fig.9   (isotropic bearings 
and disk radius r = 300 mm.) shows but a small change in 
the ½ critical resonance amplitude (reduced to around 20). 
The effect of gyroscopic action on the system in relation to 
stability is thus observed to be measly. 

 
Notably, a resonance at γ = 1, was missed in this 

example, for a perfectly balanced rotor. The reason for this 
is to be traced in the absence of initial eccentricity ε (i.e, ε 
= 0). Since a mathematically zero eccentricity cannot be 
achieved mechanically, a sharp resonance line (chain-
dotted) at γ = 1 is shown in fig.6, 7, 8 and 14. 

 
In the following illustrations we represent cases 

of sub-critical (at γ = 0.40) to supercritical (at γ = 2.50) 
rotors. The damping ratios are kept small ( 0.01) to be 
compatible with  material damping, and all initial values 
are kept zero (except fig.13(c)). 

 

 
Fig.10(a): Phase-plane plot for r = 100mm, 

01.00 === mζζζ , 67.0== kc µµ  
                       
      
 

 
Fig.8: Stability Chart for a Rotor with Asymmetric 
end bearing and gyro effect. 
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Fig.10(b): Displacement-time   plot for r = 
100mm, 01.00 === mζζζ , 67.0== kc µµ  

                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.10(c): Phase-plane plot for r = 100mm, 

01.00 === mζζζ , 67.0== kc µµ  

 
Fig.11(a): Phase-plane plot for r = 100mm, 

01.00 === mζζζ , 67.0== kc µµ  

 
Fig.12(a): Phase-plane plot for r = 100mm, 

01.00 === mζζζ , 67.0== kc µµ  

 

 
Fig.12(b): Displacement-time   plot for r = 
100mm, 01.00 === mζζζ , 67.0== kc µµ  

 
 

 
Fig.11(b): Displacement-time   plot for r = 
100mm, 01.00 === mζζζ , 67.0== kc µµ  

 

294 



14th National Conference on Machines and Mechanisms (NaCoMM-09), 
NIT, Durgapur, India, December 17-18, 2009                                                           NaCoMM-09-Paper ID: DVAMCC1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

                     
                
   
 
 
 
 
              

 
 
 
 
       
 
 
 

 Fig.10(a) shows the evolution of the phase plane 
plot for the motion of the shaft centre along the rotating x-
axis with the frequency ratio γ = 0.40 (pre ½ critical), 
damping ratio  ζ  =  ζ m =  ζ0 = 0.01 and µc = µk = 0.67. 
The windings on the plot are due to a combination of 
harmonics at frequencies of p-ω, ω and p+ω (4). The 
displacement-time graph, fig.10b, clearly shows the 
presence of this  multiple frequency oscillations which 
eventually settle to one of single frequency ω  due to 
damping of the transient at t > 2 s. In fig.10c (scale double 
of 10a), the phase-plane plot is constructed for t > 4 s. This 
elliptic figure corroborates the existence of a single 
frequency oscillatory motion. It is seen that a motion 
started with varying initial conditions settle to this 
trajectory in a very interesting fashion with nearly elliptic 
shape. The motion is stable. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 The phase-plane plot for γ = 0.55 is shown in fig 
11(a). This motion falls in the ½ critical resonance range 
and the plot is seen to spiral outwards. The corresponding 
time history in fig.11(b), produces a rapidly diverging 
graph which can settle to a very large amplitude with time. 
Operation at this speed would be hazardous for the rotor. 
 
 Fig.12(a, b, c) represent the case of γ = 0.80 (post 
½ critical state) which once again shows a cycling in an 
elliptic band at t > 9 s. 
 
 In fig.13(a, b, c)  a super critical (γ = 2.5 ) state in 
the verge of instability is described. The phase-plane 
trajectory evolves in a very interesting fashion with 
apparent symmetry in the opposite quadrants. Fig. 13(b) 
shows the time history. Most interestingly, the phase-plane 
plot is very sensitive to initial conditions. For a slight 
change in initial displacement from xr = 0 to xr = 1 micron, 
the motion evolves with a notable change as in fig.13(c) 
where the phase-plane pattern is much altered exhibiting a 

 
Fig.13(a): Phase-plane plot for r = 100mm, 

01.00 === mζζζ , 67.0== kc µµ  

 
Fig.12(c): Phase-plane plot for  r = 100mm,  

01.00 === mζζζ , 67.0== kc µµ  

 
Fig.13(b): Displacement-time plot for  r = 
100mm,  01.00 === mζζζ , 67.0== kc µµ  

 

 
Fig.13(c): Phase-plane plot for r = 100mm, 

01.00 === mζζζ , 67.0== kc µµ  
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sensitive dependence to initial conditions. None of the 
phase paths are traversed more than once. Such features 
are common in chaotic systems and are not to be expected 
in a linear systems as this. 
 

 
Fig.14: Stability Chart for a Cantilever Rotor 

          

 
Fig.15: Phase-plane plot for cantilever ,  r = 
100mm, 01.00 === mζζζ , 67.0== kc µµ  

 
  

When the end bearing is removed, the rotor 
becomes a free cantilever. Fig.14 shows the stability chart 
where a sharp ½ critical resonance is notable at γ ≈ 0.5 and 
the system becomes unstable for γ beyond 1.5. The phase-
plane plot in fig.15 (γ = 1.5) shows a twin loop spiraling 
pattern which, as in fig.13(a), is also in the verge of 
instability. Comparing fig.15 and fig.13(a) we readily 
realize the effect of orthotropic end support on the 
vibration pattern and the stability. 
  
 While constructing figs.10 to 15, the xr-axis has 
been chosen for reference. If the yr-axis were selected, like 
results, displaced in phase, would be obtained.  
 
 Fig.16 and 17 depict the effect of uniform 
acceleration time, τ  to cross the ½ critical resonance zone 
(from 0.5p to 0.75p)  on  the vibration amplitude. Fig.16 
shows a rapidly rising xr (max) that moves from 2.5 mm at  

τ  =  0.2 s to 24 mm at τ  = 0.5 s. Fig. 17 shows the 
variation of |xr| with time, t, corresponding to τ  = 0.25 s 
where the peak value of  |xr| reads 3.6 mm. Here the ½ 
critical zone is crossed within 2 ¼  oscillations. 
 

 
Fig.16: Variation of max. displacement 

                          

 
Fig.17: Variation of amplitude with time 
at τ = 0.25 s. 

 
Conclusions: 
 
 The phase-plane trajectories show a common 
feature at the sub-critical and super critical levels: the 
phase portraits appear as limit cycles which they are not as 
the same trajectory is never retraced. The present study 
deliberately considers a very flexible cantilever rotor with 
a highly compliant orthotropic bearing at the free end to 
reveal the effects of support resilience. Flexible rotors are 
preferable when weight reduction is important. A resilient 
end support reduces the rotor deflections and raises the 
range of stable operation speeds. At all events, operations 
near the ½ critical resonance as well as at the critical speed 
(γ = 1), are to be avoided as fatigue failure may soon 
result. In order to take the balanced flexible rotor to its 
supercritical operating speed, the dangerous ½ critical 
zone should be crossed within 2 ¼ oscillations or 0.25 s. 
Here the maximum vibration amplitude stays within a 
small value of 3.6 mm (fig.16). This implies that 100 % 
rotor speed should be realized within 1 s , the same 
requirement being also valid for deceleration. Doubtlessly, 
the required acceleration is high, and for a limited power 
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drive motor, a displacement arrestor at the end bearing 
becomes necessary for speeding up to the operating point.  
 
 The inclusion of gyroscopic couple, rotatory 
inertia and coriolis force raises the degrees of freedom of 
the rotor to four and the equations are formidable in 
structure. Contrary to expectations, however, their effects 
are found to be trivial in a balanced flexible (horizontal)  
rotor considered as an example. The results show that this 
rotor can be run very smoothly in the supercritical range, 
1.1 < γ < 1.5. The effect of the bearing asymmetry is not 
found to be great, excepting a marginal change in the 
shape of the stability chart.  
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