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Abstract forward kinematics of serial mechanism in general. It gives in-
sight into the mechanics and is also computationally efficient.
The paper deals with the concept of the alternative derivation of Basic Idea:
homogeneous position transformation maffikfrom the point The motion of a rigid body in general is complex. The com-
of view of vector mechanics of translation and rotation of baselex motion of a rigid body can be explained by Chasles’ theo-
frame to body frame. A joint motion property vectd} isde- rem. The statement of Chasles’ theorem as expressed by Nor
fined. The{D}-vector and its time-derivatives are representetpn [3] is presented below.
in matrix form. [D]-matrix and its time derivatives are used in Chasles’ Theorem: Any displacement of a rigid body is
deriving homogenous velocity transformation matrix and hoequivalent to the sum of a translation of any point on that body
mogeneous acceleration transformation matrix. Jacobian a@@d a rotation of the body about an axis through that point.
its time-derivatives are also derived. The method is found to The theorem is valid for velocity also. The axis referred in
be consistent with loop-closure-based approach and the resiilte theorem will be known asiotion axisin this paper. With
are consistent with the approach based on relative velocity arespect this axis, the motion of a rigid body is specified.
relative acceleration. The method has also been extended tdn the other hand, the position of a point in a rigid body is
jerk calculations. This investigation leads to a computationallgpecified by a constant position vector (which does not change
efficient alternative method for forward kinematic analysis ofvith respect time) in a reference frame fixed with the body.
serial mechanisms. So there are two reference frames. One reference frame i
Keywords: Joint motion property vector / matrix. fixed with the body in motion and called body frame. Another
reference frame, with respect to which the orientation and loca-
. tion of the motion axis are fixed and specified. This reference
1 Introduction frame is called motion frame. So it may be concluded that there
exist another reference frame with respect to which other two
The forward kinematics is an well established topic. We g&&ference frames mentioned above will be specified. This ref-
several discussion on this topic on robotics and mechanismsgence frame is seldom inertial reference frame at rest and i
Conventional approach is to establish homogeneous positigglled base frameln this paper the Base frame is a inertial
transformation matrix from the point of view of direction cosinegame and is considered at rest
and then to use vector analysis that leads to the matrix formu- potion is given / specified along the motion axis in the form
lation. Selig [5] in his book discussed various ways of analysist translation along the axis or rotation about the axis or a com-
for serial robots usingieAlgebra Shabana [6] in his book dis- pination of both. The motions are quantitatively specified with
Cussed in deta”s the fundamental aSpeCtS Of kinematiCS Of rigigspect to motion axis that is fixed in motion frame_ In every se-
multi-body system. Jazar [2]also in his book discussed at lengffy| mechanism, there exists a system of propagation of motion
various approaches for the analysis of serial robots. Huston [3hd frames are numbered accordingly.
elaborated the approach of partial velocity based on generalized=qr 3 n-link serial manipulator robot, the motion is trans-
coordinates to deal with the kinematics of rigid body. Saha [4krred from base to the end-effector. The base body is numbere
in his book defined the concept of Decoupled Natural Orthogers 1 and base frame which is fixed to the base body is also num
nal Complement matrix (DENOC) and developed an approag{ered as 1-st frame. The end effector is numbered as n-th link.
based on it. The frame fixed to the end-effector is numbered as n-th frame.
Author found some matrix formulations in text books by andrhis frame is body frame and is used to specify the geometry
Shahinpoor [7] and Uicker [8]. The derivation were based 0Bf end-effector. The (n-1)-th frame which is fixed with (n-1)-th
concept of well known loop closure equation in old text bookgody is body frame to specify the geometry of (n-1)-th body.
on mechanisms or robotics. While using vector mechanics witlrhe (n-1)-th frame is also motion frame for end-effector for the
out the concept of loop closure equation, author verified resuligascription of motion. In case of serial spur gear drive, at the
mentioned in earlier text as well as found some interesting cogenter of a spur gear we have two frames - one fixed to the geal
clusions. The results lead to a well balanced approach for entisg body frame and another frame as motion frame.
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Notation used:

2 Derivation of Homogeneous Position

e Let'{Q}; denotes a constant vector (i.e. does not change Transformation Matrix:

with time) j-th frame and measured in i-th frame. In i-th

the same as j-th frame, the notation becorh%@}j. In

erence frame is translated and rotated to coincide with body

this case superscript j is omitted and is simply written afame, the three unit vectors those represent the three orthog

{Q}-

link/body is also denoted by link 1 or body 1.

Homogeneous vector is denoted by subscript H.

[0] is 3x 3 null square matrix andl0| is 1x 3 null row

vector. {0} is 3x 1 null column vector. [I] is square

identity matrix.

frame.

Definition of cross-product matrix and some operators
used in this paper:
Cross-product matrix:

0 -a &
aX = [é] == a.z 0 _a.x
—ay & 0

{u}, {v} and{w} indicate unit vectors in x-direction, y-
direction and z-direction of right-hand orthogonal x-y-z

onal coordinate directions of the body frame with respect to
base frame and a position vector that represents the origin of

Base frame is denoted by 1-st frame and correspondine body frame with respect to base frame can be computec

from the concept of translation and rotation of vector.

Figure 1: Definition of Denavit-Hartenberg Parame-
ters (Uicker [8].)

Notations as defined by the author for presentation of matrix

form to vector form and vice-versa:

[ 0 —c b d]
c 0 -a e a
M3l a0 f |7 2
| 0 0 0 0]
a
[0 —c b d] b
c 0 -—-a e c
Vel a0 |7 d
| 0 0 0 0] e
f
a
b 0O -¢c b d
c c 0 —-a e
el g T -b a o
e 0 0 0O O
f

In general we may consider the two frames - i-th frame and
(i+1)-th frame of a multi-link serial robot. The frames are con-
nected by (i+1)-th link. The geometry of the system is specified
by Denavit-Hartenberg approach. According to DH approach,
two frames are related and specified by two link parameters
aij+1 (link length) anda; j+1 (link twist) and two joint vari-
abless i1 (joint distance) an®; j+1 (joint angle). The (i+1)-th
frame is fixed to link (i+1) and is the body frame for the de-
scription of the geometry of (i+1)-th link. The i-th frame is
not fixed to the link i but not to the link i+1. The i-th frame is
the motion frame for description of motion of link i. It requires
mentioning that link parameteas; 1 anda; ;1 as well as joint
variabless ;11 and®6; j;1 are also referred in short as a;, s
and®6; respectively.

Let {u}i, {v}i, {w}i and{r}; represent the three unit vectors
of three co-ordinate axes and the position vector of the origin of
i-th frame as measured in i-th frame afidi 1, {V}it1, {W}it1
and{r},, ,are the three unit vectors of three co-ordinate axes
and the position vector of the origin for (i+1)-th frame as mea-

Notation defined by the author for the presentation of 3-D hcured in (i+1)-th frame! {r};  , is the origin of (i+1)-th frame

mogeneous vector to 3-D vector (normal form).

v4v3

[N ol @ i o))

Here,
m4 = 4x 4 square matrixy6 = 6x 1 vector;v4 = 4x 1 homo-
geneous vector3 = 3x 1 vector.
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as measured in i-th frame agd}; is the origin of i-th frame as
measured in i-th framé{u}i 1, '{v}i;1 and'{w}i,1 represent
{u}i41 unit vector,{v};;1 unit vector and w};1 unit vector of
(i+1)-th frame as measured in i-th frame a#d}; 1 represents
position vector of the origin of (i+1)-th frame as measured in
i-th frame. This completes the information of (i+1)-th frame
with respect to i-th frame.

Basic idea:

1. Itis assumed that initially the (i+1)-th frame is coincident
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totally with i-th frame. we may write
2. Translation of (i+1)-th frame from i-th frame b1 [ Hubpr "V MWl )i ]
along {w}; unit vector and rotation of frame about the =[{uy v Wy (] Tt

same byg; i1 and translation of frame kg ;1 along the
new orientation of x-axis of (i+1)-th frame. This processThe above matrix presentation may be modified to suit homo-

gives the position vector of the origin of (i+1)-th framegeneous presentation of vectors,

as measured in i-th frame,ig{r};; and the orientation i i L i o i
of x-axis of (i+1)-th frame i.e!{u}; 1 unit vector. [ {Ug.ﬂ {V%m {Wgurl {r};ﬂ]

3. Rotation of (i+1)-th frame by angie; i1 abOUti{U}i+1 [ {uy vy wy ) T 1
unit vector (i.e. its own x-axis of (i+1)-th frame) gives - 0 0 0 1 [T+
orientations of{w};;1 (i.e. z-axis of (i+1)-th frame) and

i{V}is1 (i.e. y-axis of (i+1)-th frame). The idea may be extended and generalized as,

i i i i
The following mathematical steps in vector mechanics can [ {g}l' {\é}i {V(\)I}J' {rl}i }

generaté[T],, ;.
up {vh {wh {r} ]
1. If &js1 x {u}; +0x {v}; +S+1 x {w}; vector in i-th = { {0}' {0}' t 0}' t 1}' } T
frame be rotated abogitv}; unit vector by an anglé; ;11
and add to{r}; , the relative position vectdfr};,; of ~Wwhere, -
origin of (i+1)-th frame with respect to origin of i-th frame i g
T = 7 [FTTheea)

is obtained. K

2. If a vector 1x {u}; + 0 x {v}; + 0{w}; in i-th frame be We may define Homogeneous Axis-origin matrix for the pur-
rotated aboufw}; unit vector by an angl8; 4, ' {u};,, Pose of reference.
unit vector of (i+1)-th frame with respect to i-th frame is gy vy i i ,
obtained. {O}J {O}J {O}J {1}1 } =" [AOu];

3. Ifavector O<{u}; +0>{v};+1{w};ini-thframebero- pere [AO]; is Homogeneous Axis-origin matrix of j-th frame
tatgd abou't{u}_i+l unit vector b_y an anglei7i+1., Hwhip1 _ as measured in i-th frame.
unit vector of (i+1)-th frame with respect to i-th frame is e jdea may further be extended for computation based on
obtained. base frame as:

4. If vector Ox! {u} 1 +0 x| {Vli+1 X! {W}it1 in i- 1[AOH]J‘ _1 [AOK]; [ [Th
frame be rotated abotfu}i,1 by an angle-7 radian, _ _
we get {v}i.1 unit vector of (i+1)-th frame with respect  If i-th frame is the base frame numbered as frame 1, then

to i-th frame is obtained. [AOy]; = [I] and homogeneous position transformation matrix

_ 1JT],- can be computed and can be interpreted as below.
The rotation formula as suggested by Huston [1] may be used.

Details of derivations are avoided. HAOK]; = Y(TI;
Wha o= [ O W () ] (Taha Thus,we may conclude:
i{T4}i+l = [ &i}1€00i11 @ip1sinGij;1 Sjp1 1 }T 1. Ifthe link parameters and joint variables of a serial mech-
uh o= [{uy v b i ] T anism are known, homogeneous position transfqrmayqn
i _ T matrix may be used to compute homogenous axis-origin
My = [codijpa sinbipg 0 0] matrix for any frame from the homogeneous axis-origin
"Wwhy = [ {ul v {wh {rl ] '{Tshia matrix of other frame.
i . . . T
'"{Ta}is1 = [—cosdiji1sinGii 1 cosi 1SinGiji1 Sinaij;1 0] 2. Homogenous position transformation matrix may be viewe
"W = [ {uh vh w2 as a matrix consisting of homogeneous unit vectors of the
Tl — [ais10080 111 —j.1SiNG i1 COSI; 1]T co-ordinate axes and homogeneous position vector of the
2ii+l = (AH1CONi1 i SINL i1 hi+l origin of the frame with respect to base frame because
i{-rl}m,i {T2}iis i{T3}i+1 and’ {Ta};,, are the first, second, homqgenou§ axis-origin matrix of the base frame is an
third and forth column of Homogeneous Position transforma-  identity matrix.
tion matrix'[T];  , respectively. Position analysis:Position of a general point fixed in j-th frame

. Thus,the homqgeneous positipn transformation matrix frong,q given by position vectofR}; in j-th frame can be com-
(i+1)-th frame to i-th frame is derived and presented below. puted in 1st frame as follows to g&fR} ;.

Mhive = [ {Thiea {Tebipn {Tebin {Tabi | R, = [R« R R]"
1{R}j = Rxl{u}j+Ryl{V}j+Rzl{W}j+l{r}j 1)
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So it can be related to homogenous position transformation ma- 2. for prismatic joint i with respect to base frame.
trix as follows.
]

{ 1{2%}; } _ [1{g}j 1{3},- l{vg},- 1{r1},- H {Fi},- } 'o)f = V6m4<l{D}iT)—[ 0] l{g}‘]

_ 1[T],-{ {Fi}j } _

R} . L
where, { 1}1 } is called homogeneous position vector and

is denoted b){RH}j- So, it may be. cgnpluded thqt the unit vec{et}; r.epresenting
the motion axis in i-th frame is to be measured in base frame to

get'{e}; as well as vectofr}; in i-th frame is also to be mea-

sured in base frame to g&fr};. 1{e}; and'{r}; can easily be

coocoo
coocoo
cocoo
o2 P

2.1 Definition of joint motion property vector

l{D}i: computed using homogeneous position transformation matrix.
1. For rotational joint motion, It requires mentioning that matrix similar {®]-matrix is
available in text books by Uicker [8]and Shahinpoor [7]. In
1R He}i those text books, the matrix was derived only from the concept
{D}' = { My x{e}i } of loop closure equation of serial manipulator robots and the ex-

pression derived by them was also different. They referred the
for revolute joint j with respect to joint 1. matrix as[D]-matrix but they did not gave any specific name.
With due respect to them, the author retained the syrfibpl
used by them but gave a name for the matrix. The author usec

1{D}-T _ { 1{0} } his own approach for the development of the concept.
b e

for prismatic joint j with respect to joint 1.

2. For translational joint motion,

2.3 Some useful formulae from vector mechan-

o _ ics of serial robots:
The joint i and joint 1 have i-frame and base frame attached to

them respectively’{e}; denotes unit vector along the motionAll quantities are measured with respect to base frame i.e. frame

axis of i-th frame as measured in base fraﬁ{e.}i denotes the 1. )

relative position vector of the origin of i-th frame with respect Assuming that' {e}; for i=1 to j-1 as motion axes ané

to base frame as measured in base frame. as motion quantity for rotation , we get following formula for
The concept may be explained further with reference to bag@gular velocity of j-th link with respect to base frame.

frame (attached to base link) as below.

He—waa(tm { 15 1) ={ % } Yol = { % } Eill{'eil{e}i}]

i

and
r I Using the concept of cross-product matrix for veé‘t{)aso}j and
Hr}i = vav3 (1 [T]; { i }) =q Ty 1{e};, we may write
Iz
Quantities are measured in base frame. @) = g [9. 1 8]
The author has suggested the name for the vector because the I I; b

vector contains all the information for joint motion and when
multiplied with time-rate of joint variable it gives joint motion. and

Hry =t {r}j— il{r}j

2.2 Matrix presentation of joint motion prop- where{ {r}, indicates relative position vector of origin in j-
erty vector: th frame with respect the origin of the i-th frame as measured
in base frame? {r}; and*{r}; indicate the position vector of
the origin of frame i and that of frame j as measured from base
1[D]iR — vema (1{D}iR) frame_. The qbove relations are based on the vector mechanic
of serial manipulator robots.

_ 1[é]i l{r}ixl{e}i}
0

1. for revolute joint i with respect to base frame.

L 0] 2.4 Development of concept of joint motion prop-
0 -& & ne—gr erty vector / matrix with respect to base frame:
_ €; 0 —& rI&—elflx
- -§ & 0 gy —edy Differentiating the equation (1) and by assuming thgg}; for
0 0 0 0 i=1to j-1 as motion axes arf}j ands; as corresponding motion
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quantity for rotation and translation, we get for a point fixed ir2.5  Definition of Derivatives of joint motion prop-

j-th link,
1{R}j = Rxl{(*)}jXl{u}j+Ryl{w}jxl{V}j
+Rzl{(*)}j Xl{W}j +1{f}j
and
-1
My = 3 et st ey
-1
= 3 [5te () st
we obtain
HRE = R} < ul Ry {w) < v
+Rzl{°°}j l{W}'+l{w}j 1{r}j
+Z Hrk <t e8] + Z[S {e}]
. i-1 .
YR} = 1{(0}1'Xl{R}jJr_Zi[l{f}in{e}iei]

j—1
+3 [8Hen]

j—1

{; [Gil{e}i]] < {R};

-1 ) i-1
+_; [{r}; < {e}; 6] + ; §*{e}]

{ { &) 1{r}i31{e}i m{l{f}j}
Z{ L8 I
5 ora] | { 5 )
A|atera] {5

{1{§<}j }

j—1

HRu} = l; [1[D]F'ei + )] SH R4},

erty vector and matrix form:

In vector form:
For rotational motion in revolute joint:

R _ Mo} < e
HOH = { gty 5o (o) |
For translational motion in prismatic joint:
- {0}
O ={ 1o |
In matrix form:

Hp]F=verd (H{D}F)  *[D)] =vemu(*{D}])

2.6 Homogeneous Velocity Transformation ma-
trix:

From equation (2)

-1
%1“]] {Ra}j= L; [l[D]i(ﬂ]] 1[T},-{RH}j

d _
ERullRuns
! [Q]; is called homogeneous velocity transformation matrix

for j-th link with respect base frame.

j-1

Q) = )3 [*[D)i @]

Here, @ = 64101841
It may also be stated as follows

H{Ra} =1 [Q) R} =1 [Q)) T {Ra}

2.7 Homogeneous Acceleration transformation
matrix:

Differentiating above equation (2),

i _
1{F"%H},-—{;HDLWWDLQH[DL1[Qh-<n L[T]{Ru};
d? 4 111 iz 1 ST s e L :
R U R T RE LY
= YA

So for serial mechanisms having only single degree of freedoma,] J; is called homogeneous acceleration transformation ma-

joint ascn o i+10r §iy1, it may be generalized as

-1

HRa}, = L; HDM] LT {Ra ), 2

191

trix for link j with respect to base frame. The derivatives of
joint motion property vectors are discussed later in this paper.

The method may be extended to jerk computation also using
the derivation formula. The formula for jerk computation is
given below:

-1

3 [foné+2i )+ (18], +(c]) o)

l[Th{RH}j

1{'@},—{
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H{Ru )y = Bl T R (A= [*[Q], * P+ Q) [B] —* [B], Q) —* P [Q] ]

[C] =2t [Q}_ D], +[DJ; * [Q} +1[DJ; 1[Q]]. 1[9}1. For homogeneous velocity transformation matrix computa-

1 . : ! . .. tion and its time-derivative:
[J4]; is called homogeneous jerk transformation matrix for

link j with respect to base frame. 1{Q}j = D] {(p} 1 {Q}j = [D] {(p} + [D} {(p}
2.8 Mathematical derivation of an importantre-  for velocity computation:

lation relating Derivatives of joint motion prop- 1 a a a

A S ® @ od@ o dd, ], :
erty matrix (outline): v i =ld od e =1 {)
p 1 i -1

For rotational motion in revolute joint:

in vector form: For acceleration computation:

1R Hw}y < ey } 1 a ... ga a
B17 =1 1t (e 1 (Ll o o) fab = 1d 0§ o dw
in matrix form: P ldda qua lfldd
1[D]R_V6m4<l{b}iR) [ddi ~odd ddfj}{(p}
_ Hali x 1{9} Ly < el g x (Mo} xHek) = e} +1 3] {0
j i
0] 0 .
_ |: 1[(1)]i 1{':}i _1[6)]i l{r}i :| |: 1[é]i 1{r}i Xl{e}i } For Jerk Computation:
(0] 0 (0]
B = T Lt (5 T B [ TR U TRl (S TR (T oa a@ . dd o d?y T
{ 0] 0 H © 0 } {ap }J = {dll od d“]{cp}
1 1 R 1 R1
= ~[Q}; "D = [D]i ~[Ql; dd@ o dd® ... ddR, |-
For translational motion in prismatic joint: {dd1 ~-odd - ddf }{(p}
in vector form: {ddcﬁ‘ . ddd® - ddd® }
1{[’)}7:{1 (0 } ddd .- ddd - ddof
! {w}; x*{e}; = {(p}+21[] {0} +* []j{(p}
in matrix form:
1pT 1T Here! [J]; indicate the jacobian for j-th link with respect to base
Bl = ( {D}; ) frame.
_ {0] L&) {e},} where
_ {[w HG.W@lﬁh}{M H@w OF = [} D)D)
0 0 0 O] = [H{B} B} {B} ]
1 1 ) l . .
|: 0 {e}| :||: [0] {r}| {r}|:| {(p} — [(pl (ﬂ (pj ]T
= H}HmTlmﬁl @ = [& - @& - 4]
In general, o} = [o @ o]’
! [D]i = l[Q]i l[D]i _1[D]i 1[9]1 3 ? = ma3 (1[D}-)
2.9 Some additional results for computation of  d = va3(}[D];1[T]; {R};
RS
velocity, acceleration , jerk and jacobians and df = m4V3<1 [D])
derivatives i
| dd = vawa([*[O];+[D); M| T {Ru})
O], = Q) tD) Pl Q) e . e
| o | ¢ = mas ([ 1)+ (@) 1 [D], - O] (@ D) 2],
1[Q]i = kzl [1 k(n(+( } 1[D]1[Q]k> ‘ﬂ(] ddCf _ V4V3<[[A]+[BH l[T]J{RH}]>
HBl = [l o)+t H—l[D}-l[ﬂh—l[Dhl[QL A = [*[a), ")+t i)t O], - D), tie) ~* (D)t [a]
i—1 . .
1@L::kﬂF Dl @i-+2 D] o+ (A B = [2*[0] i)+t [0) Q]+ o) (e i)
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3 Numerical example problems and Re- 3.1 First Example Problem:

sults

The DH-parameters for a 5-dof six-linked serial mechanism
are presented below. Each joint is single-degree-of-freedom

joint.
inmm in degree in degree inmm
a(1,2)=0 a(1,2) = 90 0(1,2)=30 s(1,2)= 195
a(2,3) =178 0a(2,3) = 0(2,3)=60 5(2,3)=
a(3,4) =178 (3, 4) = O 6(3,4) =—-30 s(3,4) = 0
a(4,5 =0 04,5 =90 6(4,5) =0 s(4,5)=0
a(5,6)=0 a(5,6)=0 6(5,6)=0 s(5,6) =97

Joint types and Joint variable rates

JointNa[Typé ® ®

;

1[Revolut¢  0.20rad/s Orad/s*> Orad/s®
2 [Revoluté Orad/s  Orad/s*> Orad/s
3 [Revoluté Oad/s  Orad/$*> Orad/s®
4[Revoluté —0.35rad/s Orad/s> Orad/s
5 [Prismatid 6mnys  Omnys®> Omnys®

The values foxp are arbitrarily chosen.

Results for a point P(0,0,64mm) in 6-th link as measured

in base frame

The schematic mechanism bears similarity in shape and size

with the Microbot model TCM five-axis robot mentioned by
Uicker [8] in text book but the joint motion characteristics have 5454

position Vp a ap
mm rad/s mms rad/s? mnys
—-0.175 —-72029 -0.606 —13741

been modified to make it a suitable numerical example problemyg1g> 0303 33157 -—0.035 —29.088
for describing all the features of analytical approach. The basegg72 0200 -33371 Q000 14980
link is numbered as link 1. The values of joint variables have

been chosen arbitrarily.

Here,

a ap
rad/s> mnys®

Q007
—0.012
Q000

Joint angle and joint distance are joint variables for revo - Angular velocity and/, - Linear velocity of a point,
o - Angular acceleration ana, - Linear acceleration,

6(2,3), 6(3,4) andB(4,5) ands(5, 6) joint variables and their & - Angular Jerk anéy, - Linear jerk
values have been chosen arbitrarily. The vak(é@s2),

lute joint and prismatic joint respectively. In the tab®]1,2)

s(2,3),
s(3,4), s(4,5) and0(5,6) are fixed quantities. The link 5 that

Jacobian for link 6 :

connects 4-th coordinate frame and 5-th coordinate frame is of 0.000 —-0.866 —0.866 —0.866
zero link length and zero joint distance.

Link No.3

Joint No.2

Link No.2

Joint No. 1 4\\ N
AN Link No.1

(Base Link)

Figure 2: Kinematic Diagram of Schematic Mechanism

In figure 2: Joint No.1 - axial revolute joint; Joint no.2, joint

Joint No.3
Link No.4

Joint No.4

Link No.5
© /
N Joint No.5

~
Link No.6

End-effector

0.000 Q500 Q500 Q500 Q000
Q000
0 = 1.000 —0.000 -0.000 -—-0.000 Q000
6 —-161826 —-89.826 43673 120749 Q433
280291 51861 25215 69715 Q250
0.000 323652 234652 80500 —-0.866
First Time-derivative of Jacobian for link 6 :
0.000 Q173 Q173 Q173 Q000 ]
0.000 Q100 Q100 Q100 Q000
[j] _ 0.000 Q000 —0.000 Q000 Q000
6 —-33157 39272 23857 14957 -0.312
—72029 -1.279 25420 40835 -0.064
0.000 —45800 —-45800 -45800 -0.175 |
Second Time-derivative of Jacobian for link 6 :
0.000 —-0.020 -0.020 —-0.020 Q000 ]
0.000 Q034 Q034 Q034 Q000
[j] _ 0.000 Q000 Q000 Q000 Q000
6 29.088 —-16.054 -—-21.394 -—-24477 —-0.009
-13741 6144 3061 1281 —-0.145
0.000 —13498 —-13498 -13498 Q106 |

3.2 Second Example Problem:

no.3 and joint no.4 - normal revolute joints; Joint no.5 - prisdJoint types and Joint variable rates:

matic joint;

Location point for analysis: point P.

Point P is a fixed point in link no.6 and is specified by the po- 2
sition vector (0,0,64mm) in 6-th frame that is attached to link 3

no.6.
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JointNa[Typé ¢ ®

¢
1[Revolut¢  0.20rad/s  0.20rad/s> 0.20rad/s®

[Revoluté Orad/s 0.20rad/s*> 0.20rad/s’
[Revolut¢  Orad/s 0.20rad/s*> 0.20rad/s?
4 [Revoluté —0.35rad/s 0.20rad/s* 0.20rad/s’
5]

Prismatid ~ 6.0mnys  5mnys? 5mnys®

The values foxp, @ and @ are arbitrarily chosen.
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—4.07
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Results for a point P(0,0,64mm) in 6-th link as measured
in base frame

position Vp a ap a ap
mm  rads mm's rad/? mnys® rad/ss mnys®
28029 -017 —-7203 024 —-2902 045 2131
26182 030 3316 —-055 3683 —-0.44 5664
29872 020 —-3337 020 13841 020 4372

Jacobian for link 6 :

0.000 Q0500 Q0500 Q500 Q000
0.000 —0.866 —0.866 —0.866 Q000
1.000 —0.000 -0.000 -0.000 Q000

Nle = —161826 —89.826 43673 120749 0433

280291 51861 25215 69715 Q250
0.000 323652 234652 80500 —0.866

First Time-derivative of Jacobian for link 6 :

0.000 Q173 Q173 Q0173 Q000
0.000 Q0100 Q0100 Q0100 Q000
0.000 Q000 —0.000 Q000 Q000

6= —33157 39272 23857 14957 —0.312

Second Time-derivative of Jacobian for link 6 :

—72029 —-1.279 25420 40835 —0.064 4
0.000 —45800 —-45800 -—-45800 -0.175

7. Author has verified that the values of angular velocity,
linear velocity, angular acceleration and linear accelera-
tion are affected by first-order time-rate of variation and
second time-rate of variation for joint variables but com-
pletely independent of higher-order time-derivative of joint
variables. These are expected from theory of robotics.

3.4 Conclusions:

1. The method is well suited for kinematic analysis for the
time-derivative of any order for joint variables. It is ca-
pable of handling various conditions of variation of joint
variables. Complete generalized analysis is possible for
serial robots and other serial mechanisms having any num
ber of links.

2. The method can be effectively programmed.

3. The method may be used to lower pair of joints and can
be modified to suit for higher pair of joint.

Future scope of work:

The method may be extended to analysis the kinematics of othe

multi-body systems consisting of rigid bodies like closed chain

0.000 Q153 Q153 Q153 Q000 system, parallel system etc. Currently the author is working in
0.000 Q134 Q134 Q134 Q000 ;
this area.
[J] _ 0.000 Q000 —0.000 —0.000 Q000
6~ | —36833 —-112576 —-117916 -76.499 Q390
—29.022 —-73536 —41.019 3446 Q200 References
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