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Abstract 

Optimal control of planar grasping by multi-finger hand 
is addressed in this paper. Real time control of manipu-
lation of planar object has to address the force distribu-
tion problem which is an under constrained problem and 
requires optimization of the force system. The proposed 
control law finds the optimal fingertip force required to 
manipulate the object through exact optimization of the 
friction cone angles at the contact point. This guarantees 
the stability of the grasp without causing slip and conse-
quently loss of contact with the grasped object during 
manipulation. Demonstration of manipulation of object 
grasped by two fingers in Matlab is simulated. 
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1 Introduction 

Autonomous Robotic Dexterous Manipulation demands 
skills in mechanism design, force allocation, control 
theory, and AI strategies. The real time control of grasp-
ing requires the determination of suitable grasping 
forces to balance the external force acting on the grasped 
object and maintain the grasp stability by optimizing the 
friction angles at finger contacts. Therefore force distri-
bution involves force optimization. Cheng and Orin [8] 
and Klein and Kittivatcharapong [9] have solved force 
optimization problem as a linear programming problem 
with linearized friction constraints using simplex me-
thod. But these techniques are computationally intensive 
and are unsuitable for real-time implementation. Dem-
mel and Lafferriere [5] reduced the nonlinear friction 
constraint problem into an eigenvalue problem. This 
method cannot be extended in closed form to situations 
where arbitrary equilibrating forces are generated out-
side the grasp plane. Nakamura [6] proposed nonlinear 
programming techniques using Lagrange multipliers. 
This method is time consuming and there is no mention 
about real-time implementation. Buss [7] expressed the 
nonlinear friction cone constraints as equivalent positive 
definiteness of certain symmetric matrix subject to linear 
constraints and developed gradient flow algorithm for 

real-time computation. This method is computationally 
efficient but requires a valid initial grasp force, which 
satisfies the friction cone constraint to start the gradient 
algorithm. Mukherjee [3] proposed a closed form solu-
tion for optimal interaction force which is slow in im-
plementation as eighth order polynomial is to be solved 

Impedance control of position servoed actuators 
limits the speed at which the finger and object contact 
force can change, thus inhibiting sudden changes in the 
constraint structure. Local stability of such grasps can be 
guaranteed, but not over the complete work space. This 
problem is skirted when using force control techniques. 
Chung [1] proposed a computed torque method com-
bined with optimizing the friction angles with arbitrary 
gain setting. Fuhua [2] proposed force control law using 
angular rates of object as feedback demonstrating Lya-
punov, asymptotic and global asymptotic stability under 
appropriate conditions. 

The specific grasping issue is to maintain the sta-
bility of the object during manipulation. The proposed 
control law finds the optimal fingertip force required to 
manipulate the object combined with optimizing the 
friction cone angles at the contact point. This guarantees 
the stability of the object manipulation without causing 
slipping and damage to the grasped object. 
 The contact forces can be decomposed into two 
parts i.e. equilibrating force which is also called as min-
imum norm solution which equilibrates the external 
wrench acting on object and interaction force also 
known as null solution as it causes no net force to be 
exerted on the object but is used to modify the contact 
stability locally. 

2  System Dynamics 

Dynamic description of the system consisting of a multi-
fingered robot hand and an object held by hand has been 
reported in [1]. The following segment describes dy-
namics without deriving the equations. 
 The general motion equations of the object ex-
pressed in the base (inertial) frame can be written as: 
 
 
 ( )o o o o o oM r + C r ,r r = F&& & &  (1) 

Where represent the combined mass and inertia 
matrix,  represent the position and orientation of the 



14th National Conference on Machines and Mechanisms (NaCoMM09), 
NIT, Durgapur, India, December 17-18, 2009  NaCoMM-2009-RSS25 

  254

object and  represents the forces and torques applied 
to the object at its center of mass. 

In planar grasping the object dynamics are some-
what simplified since the object is only allowed to rotate 
about the axis perpendicular to the plane of motion. If 
the position and orientation of the object is given by 

 and the inertia of the object as  , 
it is invariant under rotation, then 
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The dynamics of finger-object contact is described 
by a mapping between forces exerted by the finger at the 
point of contact and the force and the moment that can 
be resisted by the body at some reference point (usually 
the C.G) on the object.  

 
Fig. 1: Rigid Object Grasped by k-fingers. 

Suppose k-fingers are contacting the object as 
shown in Fig. (1). Point contact with friction is assumed 
at each contact point. Each contact applies a force 

through the contact point  to the object. The 
resultant wrench,  applied to the ob-
ject by multi-fingered hands are given by 
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Where  is a grasp matrix at the contact point  
given by 
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Where  is an identity matrix, rci is the po-
sition and orientation vector of ith contact point and 

 is a skew-symmetric matrix expressing 
the cross-product from rci. The grasp matrix maps the 
fingertip forces to the equivalent object wrench. The 
grasp map is represented as  matrix, where  is the 
number of contact forces generated by the fingers. The 
grasp matrix is calculated based on the position and 
orientation of the object and the fingertips. 

3  Force Distribution 

The general formulation for the force distribution has 

been derived in [1] and [4]. The case of multi-fingered 
hand manipulating object with hard point contact is pre-
sented in this section.  To determine the force required 
for manipulation screw theory is used. Mason and Salis-
bury [10] used screw theory to characterize the nature of 
contacts between multi-fingered hands and objects. This 
formulation is neat and makes the calculations simple. 

Force distribution is an inverse dynamic problem 
i.e. the motion of system is specified and actuation 
forces/torques to effect this motion is to be determined. 
In general, the contact force exerted by a multi-fingered 
hand can be decomposed into two parts, first the equili-
brating force, which is determined by the specified ma-
nipulation task, and second the internal force, which has 
no effect on the equilibrium but can be used to modify 
the contact force to achieve firm fingertip contact.  

The fingertip force  should be such that it should 
equilibrate the external wrench acting on the object. For 
any external wrench acting on the object, the general 
solution to (4) has the form 
 +

c of = G F + Nλ  (5) 
Where  is the pseudo-inverse solution and 

belongs to the row space of . It is referred to as mini-
mum norm solution which equilibrates the external 
wrench acting on the object. However to achieve posi-
tive normal contact and manage the friction angle, the 
null solutions have to be superimposed upon the mini-
mum norm solution. These forces have no internal forces.  

 is the homogeneous solution and belongs 
to the null space of grasp matrix , denoted by . 
Internal forces between two contact points are the com-
ponent of the differences of the net contact forces along 
the line joining the two contact points. 

The net forces at the n contact points can be of the 
form 

 

n
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 (6) 

Where  are the net forces and  are the equili-
brating forces at the contact point. 

 is the unit direction vector 
along which interaction forces are to be applied, also 

 and  is the associated scalar factor. 
Consequently, equal and opposite forces are added along 
the lines of contact between point pairs. 

4  Formulation of Min-MaxProblem   

The friction angle at the contact point  is 
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 cos = i i
i

i

n P
P

θ
⋅

P P
 (7) 

Where ni is the unit normal to the surface at the con-
tact point . The limiting friction problem can be for-
mulated as that of finding a set of internal force such 
that the angle does not exceed the maximum allowable 
friction angle.  As a result, the maximum friction angles 
will be the objective function to be minimized. A grasp 
situation which satisfies this condition is a stable grasp. 

 
Fig. 2: Object Grasped by 2-fingers. 

For two point frictional contact force vectors can be 
represented as 

 
1 e 12 121

2 e 21 212

P = F + k u

P = F + k u
 (8) 

Where  are the net forces and are the equili-
brating forces at the contact point , with i=1, 2. The 

 is the unit direction vector along which the interact-
ing force for finger1 is going to act and .  

are the associated scalar factor. Correspon-
dingly the friction cone angle 1θ and 2θ at the contact 
point is obtained as 
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Where  and are the unit normal to the surface 
at the contact point  and . The development below 
produces a set of equations, solution of which yields, the 
most stable grasp possible using a set of contact points. 
This is achieved by maximizing the minimum of the two 
friction angles for a set of two contact points 

4.1  Closed Form Solution of Min-Max 

Mukherjee [3] proposed the closed form solution of 
min-max problem by using cosine function, but its solu-
tion requires the evaluation of an 8th order polynomial 
which is computationally intensive though it is a logical 
choice. Considering tan (θi) results in quadratic equation 
for obtaining the solution which is defined as 

 tan = i i

i i

r ×P
n ×Piθ  (10) 

For two point contact  
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For solution two cases are considered 

 1 2

1 2
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θ θ
θ θ

=
= −

 (12) 

This gives us the quadratic equation in terms of un-
known scalar parameter k. That value of k is selected for 
which the value of cos(θ) is maximum since the min-
max problem for the θ translates into a max-min prob-
lem for the cos(θ).  

5  Control Algorithm  

The goal of control scheme is to determine optimal re-
sultant contact force and optimal internal forces so that 
the grasped object undergoes a desired motion. The con-
trol scheme used is based on linear time invariant optim-
al control. The model is defined by the state equations is 
of the form 
 = +X(t) f(X(t)) g(X(t))U(t)&  (13) 

Linearizing the state equation at time t1 the state eq-
uation is reduced to form 
 1 1X(t) = A(t )X(t) + B(t )U(t)&  (14) 

Where X is nx1, A is nxn, B is nxp and U is Px1. 
The control scheme used is based on linear time inva-
riant optimal control. The linear quadratic control law 
for Eq. (14), where (A,B) is completely controllable is 
given by 
 U(t) = -K(t)X(t)  (15) 

Where  is a real, constant and unconstrained 
gain matrix, that minimizes the following performance 
function which is sum of norm of states and norm the 
input force acting at each contact point subject to initial 
conditions X(0)=X0: 

 = T T

0
(X (t)QX(t) + U (t)RU(t))J dt

∞

∫  (16) 

Where the matrices and are 
positive semi-definite and positive-definite, respectively. 
The solution is obtained by solving the matrix Ricatti 
equation given by 

 T T T TA P + PA- K B P - PBK + K RK = -Q  (17) 
The control gain matrix that minimizes the cost func-

tion is given by: 

 ( ) ( )-1 TK t = R B P t  (18) 
The block diagram is shown in Fig. (2). with force 

optimzation. The optimal control problem defined as the 
regulator problem with online force optimization. The 
LQR controller is designed to drive the states to equili-
brium position in a manner that it optimizes some per-
formance measure. 
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Fig. 3: Regulator Problem with Contact Optimization 

The object dynamics is modified to incorporate en-
vironment force  
 ( )o o s o r o cM X +K X - X = F = Gf&&  (19) 

Where is an arbitrary, locally li-
nearized, stiffness applied by the environment on the 
object. 

6  Simulation  

In order to show the effectives of proposed algorithm, a 
numerical example is simulated. An planar object 
grasped by two fingers with the assumption that object is 
rigid and finger-object interaction is through a point 
contact with friction.  The reference frame to start with 
has been assumed to be at the center of mass of the ob-
ject. 

 
Fig. 4: Planar Object Grasped by 2-fingers  

The Fig. (5). shows the object grasped by two fin-
gers. In this formulation, the origin of coordinate system 
is at the C.G of the object. Consider a planar object con-
tacted at two opposite faces. The points of contact on 
object in local coordinates are rcx1= (0.05, 0.07, 0) and 
rcx2= (0.05, 0.0289, 0), mass of object, mo=0.05 kg and 
moment of inertia of object, Io=1.3202x10-5kg-m2.  The 
state space formulation is 
 ( ) ( ) ( ) ( ) ( )X t = A t X t + B t U t&  (20) 

Where  X(t) is 6x1, A is 6x6, B is 6x4 and U is 4x1. 
The value of spring stiffness is taken as , 

 and . The A ma-
trix and B matrix are of form 
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The object is regulated to equilibrium position from 
the current position of the object. The weighting matric-
es are user specified and define the trade-off between 
regulation performance (how fast goes to zero) and con-
trol effort. The LQR regulator Gain matrix Klqr is com-
puted with the following weighting matrices 

1 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0

= ;
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1

Q R

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

 (24) 

The force required to reposition the object is com-
puted. The contact optimization is done to check the 
stability of the object. 

7  Result  

In order to show the effectives of proposed algorithm, a 
numerical example is simulated. An planar object 
grasped by two fingers with the assumption that object is 
rigid and finger-object interaction is through a point 
contact with friction.  The reference frame to start with 
has been assumed to be at the center of mass of the ob-
ject. 
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Fig. 5: System States  

The time trace of states posed as regulator problem 
during manipulation is shown in Fig. (5). The system 
states are driven to equilibrium point x=0.3345, 
y=0.4456, which is the C.G of the object in 2 sec. 

 
Fig. 6: Fingertip force without internal force  

The equilibrating force is non-zero at steady state as 
the environmental force has to be compensated shown in 
Fig. (6). 

 
Fig. 7: Total Fingertip force with internal force  

The fingertip force is modified by internal force is 
shown in Fig. (7). This force will hold object stably dur-
ing manipulation satisfying friction cone constraint. 

 
Fig. 8: Internal force  

Fig. (8). shows the interaction force which is used to 
modify the equilibrating forces to hold the object stably. 

 
Fig. 9: Friction angle without and with Contact Optimi-

zation  

Fig. (9). shows the friction angle with and without 
internal force. The infeasible solution where the angle is 
greater than 90o is modified by the contact optimization 
and satisfies the feasible solution. The friction angle 
should be equal is satisfied as demanded by the algo-
rithm and is 43o. 

 
Fig. 10: Scalar Parameter 

Fig. (10). shows the scalar parameter k peaks the 
value of -0.223 before settling down to value of -0.0074. 
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8  Conclusion  

Solution to the regulator problem in 2D grasp situation 
has been demonstrated through a 2 finger example. The 
contact force optimization leads to physically realizable 
solution that is not suggested by the solution through 
LQR formulation. The methodology is to be extended to 
three fingered and 3-D grasp situation. 
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